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Abstract. Estimating volumetric soil moisture (M) and surface roughness (S) are the key
parameters for numerous agricultural and hydrological applications. Although these two param-
eters can be effectively retrieved from synthetic aperture radar (SAR) data, the presence of veg-
etation can negatively affect the results. A method was proposed to accurately estimate M, and S
over vegetated agricultural areas. The method was based on applying the machine learning inver-
sion approach along with SAR data to invert a combination of the parameterized water cloud
model (PWCM) and the calibrated integral equation model (CIEM). The soil backscattered com-
ponent in water cloud model (WCM) was generated by CIEM to be applied to the WCM param-
eterization and dataset simulation. Three machine learning algorithms, including the support
vector regression (SVR), multi-output SVR (MSVR), and artificial neural network (ANN), were
employed to model the relationship between the simulated dataset variables. The genetic algo-
rithm was also applied to optimize the models’ parameters. The inversion technique results
demonstrated that the MSVR and ANN had the highest accuracy in estimating M, and S due
to their better structures. The SMAPVEX-16 in situ dataset, along with three Sentinel-1 images,
was applied to evaluate the accuracy of the WCM parameterization and the proposed method for
M, and S estimation. The accuracies of the PWCM in the VV and VH polarizations of Sentinel-1
C-band data were reasonable for VWC < 2.5 kg/m? [root-mean-square error (RMSE) = 1.44
and 1.77 dB, respectively]. Additionally, it was observed that the trained SVR, MSVR, and ANN
had similar results for different VWC values. In summary, the proposed method had high poten-
tial in vegetated agricultural areas with VWC < 2.5 kg/m?, for which the RMSEs were 4
to 7 vol. % and 0.35 to 0.46 cm depending on the VWC values in retrieving M, and S, respec-
tively. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOL 10.1117/1.JRS.15
.018503]
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1 Introduction

Volumetric soil moisture (M) and surface roughness (S) retrieval are important for various envi-
ronmental studies, including hydrology,"? climate change analysis,** natural resources manage-
ment,' and precision agriculture.”° The response of synthetic aperture radar (SAR) signals has
been widely evaluated as a function of surface parameters in agricultural fields.”” Many
researchers have investigated the feasibility of retrieving soil parameters, such as M, and S from
airborne and spaceborne SAR systems. %!

The SAR backscattering coefficient (¢°) is a function of the physical and electrical character-
istics of a target.'? ° mainly depends on the characteristics of the surface and SAR sensor.'*!* In
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this regard, ¢ is significantly affected by M, and S.*!5 So far, many techniques and models have
been proposed, verified, and validated to retrieve M, and S from various SAR datasets.'>16-18
The corresponding methods can be divided into three main categories: (1) theoretical models,
(2) empirical regression techniques, and (3) semiempirical models.'*** For instance, the integral
equation model (IEM) is one of the theoretical models that is commonly applied to estimate M,
and S through inversion techniques.'®?!** Compared to other existent models that usually can be
applied to either smooth or rough surfaces, IEM enables to model S values with a broad range of
values.”* ™

M, and S retrieval using SAR data with the presence of vegetation cover in agricultural areas
is complicated because vegetation cover affects SAR backscattering values from soil.>~® The
water cloud model (WCM) is utilized in many studies to model the vegetation impacts on ¢ and
to estimate the soil parameters in the vegetated agricultural areas. Several studies have so far
utilized WCM and discussed its advantages and limitations for soil parameters estimation the
agricultural regions. For instance,” the WCM employed to simulate quad-polarization ¢° in the
C-band with the incidence angle (6) of 30 deg for wheat and pea fields. The root-mean-square
errors (RMSEs) varied from 0.7 to 1.0 dB and from 0.2 to 1.2 dB depending on the crop type for
the simulated cross polarization and co-polarization, respectively. Moreover,” developed an
inversion approach for M, retrieval using X-band SAR and optical data over agricultural areas.
The best results were obtained with an RMSE of 3.6 to 6.1 vol. % for different NDVI values.
Khedri et al.*° also proposed the modified improved WCM as a semianalytical method to esti-
mate M, using PolISAR imagery. The results demonstrated that the proposed method had a high
accuracy with the coefficient of determination (R?) = 95% to 98% and RMSE = 0.00012 to
0.0016. Furthermore, Bao et al.*! presented a new method for M, estimation over sparse veg-
etation area based on a combination of SAR and optical data. A spectral index generated from the
Landsat-8 imagery was utilized as a vegetation descriptor to eliminate the vegetation impacts on
Sentinel-1 ¢° values. The correlation coefficient (r) and RMSE of 0.911 and 0.053 cm?®/cm~3
were, respectively, obtained. Xing et al.*? also used a modified WCM to eliminate the vegetation
effects on ¢°. The validation against in situ measurements resulted in R> =71% and
RMSE = 4.43. Finally, Rawat et al.*® estimated M, over the agricultural fields by a modified
WCM using a combination of SAR and optical satellite data. In this study, the model perfor-
mance was validated for three days and the following results were reported: R> = 86%, 96%,
and 91% and RMSE = 0.06, 0.03, and 0.02 vol. %.

In IEM, ¢° is determined as a function of the characteristics of the SAR system and soil
parameters. Three parameters are generally employed as the descriptors of S in the bare agri-
cultural field: (1) the standard deviation of heights (/,,,,), (2) the correlation function, and (3) the
correlation length (/). Several studies have demonstrated that ¢° was changed significantly
depending on the correlation function.** Consequently, this parameter should be correctly cali-
brated to minimize the errors in the 6° modeling.*>=® In this regard, several studies have cali-
brated the semiempirical IEM to improve its accuracy.*** In these approaches, [ was replaced by
a calibration parameter called LPt.*

The inversion of the IEM is not possible using analytical methods.*'*> Thus several methods
have inverted the corresponding equations to obtain surface parameters given the SAR param-
eters and the backscattering coefficient. These methods include lookup tables, artificial neural
networks (ANN), Bayesian methods, minimization techniques,*® support vector regression
(SVR),* and multi-output SVR (MSVR).** The SVR, MSVR, and ANN are generally utilized
to model complex relationships between input and output variables.***® Furthermore, nonlinear
relationships with high complexity can be modeled by these models.*’ SVR is a version of the
support vector machine (SVM) that was first proposed in 1997 by Vapnik et al.*® Tuia et al.
(2011)* presented an implementation of the MSVR for remote sensing biophysical parameter
estimation as an enhancement of SVR. MSVR allows predicting several output variables at once
by sharing the same model parameters among all input parameters with the possibility of con-
sidering the relationship between output variables.**** Moreover, MSVR significantly decreases
the computation time by increasing the redundancy within output classes.*’ Several studies have
applied the ANN, SVR, and MSVR to model the relationship between soil parameters and SAR
configuration. For example, Ahmad et al.’’ estimated M, using three machine learning
approaches of the SVR, feed-forward ANN, and multivariate linear regression. The results
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showed that the SVR model estimated M, with higher accuracy. Moreover, Pasolli et al.'’

applied the SVR and ANN models to retrieve M, using SAR data. The estimated soil moisture
values from the two models were compared, and it was observed that the SVR model had a better
accuracy. Additionally, Baghdadi et al.’! investigated the potential of the polarimetric C-band
SAR data for the soil surface parameters retrieval over agricultural fields. An ANN model was
initially trained using a simulated dataset generated from the calibrated integral equation model
(CIEM) and was then evaluated against the ground measurements and SAR datasets. The
RMSEs of 7.0 vol. % and 0.5 cm were obtained for M, and S, respectively. Furthermore,
Baghdadi et al.® calibrated the WCM, in which the soil ¢° depended on the soil and the
SAR parameters were simulated using the CIEM. In this study, an ANN model employed for
the inversion of the model** also investigated the performance of two radar backscattering mod-
els: the CIEM and the modified Dubois model (MDB). The CIEM and MDB performed with
RMSEs of 0.78 and 1.45 dB, respectively. M, was then retrieved using an ANN inversion
method. The ANN model was trained using the simulated datasets generated from the
CIEM and MDB. The inversion results showed that the single polarized data estimated M, with
a better accuracy. In addition,” the SVR and MSVR methods were used to invert the WCM
using Sentinel-1 data. Mandal et al. in this research estimated the plant area index (PAI,
m? m~2) and wet biomass (W, kgm~2) from Sentinel-1 SAR data by inversion of the WCM,
and the performance of the inversion method was also validated using in sifu measurements.
The validation results showed a good correlation for both wet biomass and PAI using the
MSVR method. Finally, Ezzahar et al.*® estimated M , using the inversion of the IEM, OH, and
SVM. The SAR data acquired over bare ground and in situ M, were applied to assess the per-
formance of the models. It was observed that the estimated M, using 6%, had a better accuracy
compared to 6V;;. The maps produced by the SVM and IEM were similar and the RMSE of 2.77
and 2.71 vol. % were obtained from the SVM and IEM, respectively.

Most of the remote sensing studies have used a combination of optical and radar data to
estimate soil parameters over vegetated agricultural areas. This has several limitations, such
as the lack of suitable concurrent optical and SAR imagery or the existence of the cloud cover.
Thus this study proposed a method to estimate M, and S using only SAR data over vegetated
agricultural areas. The first objective of this study was an investigation of the potential of
machine learning techniques, such as SVR, MSVR, and ANN to model the relationship between
SAR and soil parameters through the inversion method. The SAR parameters were simulated
using the CIEM and parameterized WCM (PWCM). Additionally, we focused on the structures
of the models to compare them with their inversion methods. The second and the main objective
was estimating soil parameters over the vegetated agricultural areas by the trained models (i.e.,
SVR, MSVR, and ANN) using only Sentinel-1 SAR data (i.e., 6%y, 6%y, and 0). The main
innovation of this study was to model soil parameters on the agricultural fields with vegetation
cover using only SAR data utilizing the trained SVR, MSVR, and ANN without any vegetation
describers derived from optical images as an input variable. Finally, the SMAP-VEX16-MB in
situ dataset®> was applied to perform the WCM parameterization and to evaluate the accuracy of
the proposed method. In summary, after preprocessing the Sentinel-1 images, the WCM param-
eterization is implemented using 60% of the in situ dataset, in which the contribution from the
soil in WCM was generated by the CIEM. Then 40% of the in situ dataset was applied to evaluate
the WCM parameterization. After that, the SVR, MSVR, and ANN were used to invert the simu-
lated dataset, which is generated by combination PWCM and CIEM. In the inversion process, the
genetic algorithm (GA) is applied to optimize the models’ parameters. Finally, the trained mod-
els applied to ¢° and @ derived from Sentinel-1 data to evaluate the accuracy of the proposed
method.

2 Study Area and Data
2.1 Study Area

The study area (Fig. 1) is near Winnipeg in Manitoba, Canada, with an area of 26 km X 48 km
(latitude = 49.3°N to 49.8°N and longitude = 97.7°W to 98.2°W). The major crop types in this
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Fig. 1 Study area and land cover of the SMAPVEX16-MB ground campaign in Manitoba,
Canada.?

area are corn, canola, wheat, winter wheat, oats, and soybeans (see the land cover map in Fig. 1).
In situ measurements of crops and soil parameters were collected more than 50 agricultural fields
from June 8, 2016, to July 22, 2016.

2.2 Datasets

In this section, three types of datasets are discussed: (1) the in situ datasets, which were used for
the WCM parameterization and the evaluation of the proposed method; (2) satellite datasets; and
(3) simulated dataset. All incorporated datasets are available in Ref. 53.

2.2.1 In situ datasets

Soil Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) datasets were
measured in the field and are available in Ref. 54.°% In this study, this in situ dataset was
employed to develop and evaluate the proposed method. The SMAPVEX16-MB was conducted
during the summer of 2016 and was focused on the monitoring of soil surface and crop. M,, S,
and VWC were mainly collected. In this study, M, at the depth of 5 cm, S, and VWC collected
on June 13, 2016, July 7, 2016, and July 19, 2016 were used for WCM parameterization and
evaluation (Table 1). The in situ datasets were divided into three groups based on the VWC

values to provide more reliable evaluation: (1) vegetation areas with VWC < 1.0 kg/m?,

Table 1 The Sentinel-1 satellite images and in situ datasets, which were used in this study.

6 (deg) # Field M, (vol. %) S (cm) VWC (kg/m?)
Date [near—far] samples [min-max] [min-max] [min-max]
June 13, 2016 [29.2-31.8] 55 [10-35] [0.33-2.07] [0.002-1.9]
July 7, 2016 [37.4-39.6] 53 [7-62] [0.026-3.56]
July 19, 2016 [31.5-33.9] 82 [14-51] [0.042-4.92]

Note: 6, incidence angle; M, volumetric soil surface moisture; S, soil surface roughness; and VWC, vegetation
water content.
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(2) vegetation areas with VWC between 1.0 and 2.5 kg/m?, and (3) vegetation areas with
VWC > 2.5 kg/m?. The distribution of the ground sites is shown in Fig. 1.

2.2.2 Sentinel-1 datasets

Three level-1 ground range detected Sentinel-1 images in the interferometric wide swath mode
were used in this study. The images had a spatial resolution of 10 m in the dual-polarization (VH
and VV) and were acquired in June and July 2016. Table 1 provides more information about
these images. In this study, the imagery was initially multi-looked and ground-projected.
Subsequently, they were preprocessed through radiometric calibration and terrain correction
modules in the Sentinel-1 toolbox in the Sentinel Application Platform SNAP* to derive ¢°
and 6.

2.2.3 Simulated datasets

The simulated datasets were generated using the PWCM and CIEM; the methodology of this is
discussed in Sec. 3.

3 Method

As discussed, the main objective of this study was to evaluate the sustainability of the SVR,
MSVR, and ANN algorithms to model the relationship between SAR configuration and the soil
parameters over vegetated agricultural areas. The flowchart of the proposed method is illustrated
in Fig. 2 and is summarized in the following five steps. Additionally, the main steps of the pro-
posed method are discussed in more detail in Secs. 3.1-3.3.

(1) The Sentinel-1 images were preprocessed to extract ¢° and 6.

(2) The WCM was parameterized using the in situ datasets. The contribution from the soil in
WCM was generated by the CIEM.

(3) The PWCM was evaluated against the in sifu data and the extracted ¢? values in the VV
and VH polarizations.

(4) The GA was applied to optimize the parameters of the SVR, MSVR, and ANN algo-
rithms through modeling the inversion of the simulated datasets.

(5) The performance of the proposed method for M, and S retrieval was evaluated using the
in situ datasets.

3.1 Generating Simulated Dataset Using the WCM and CIEM

The WCM has generally been applied to model the vegetation impacts on the backscattering
coefficient over the vegetated agricultural areas. WCM computes two components: (1) the direct
vegetation contribution and (2) the attenuation impacts on SAR backscattering using one veg-
etation descriptor that represents the vegetation effects.>>%% In this model, the total backscatter-
ing value equals the vegetation backscatter and the soil backscatter with the attenuation
coefficient. In this research, the WCM developed by Attema and Ulaby” was used

(Egs. (D-(3)I:

0  _ 0 2 0
Otorgp = Oveg.ap T L apOsoilgp> M
0 _ 2
Oveg.qp = AgpV1 cos O(1 = T,), ?2)
T?}p — e—Zquvz sec 97 (3)

where 60, is the backscattered radar signal, ageg is the backscattering component of the vegeta-
tion, 6° ., is the contribution from the soil, and ¢p determines the polarization type. 72 is the two-
way attenuation coefficient, V| and V, describe vegetation effects, 6 is the incidence angle of the
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Fig. 2 Flowchart of the proposed method for estimating the soil surface parameters in vegetated
agricultural areas based on the PWCM and the CIEM.

radar imaging geometry, and A,,, and B, are WCM fitting parameters. In this study, 6., was
generated using the CIEM and V| = V2 = VWC.

3.2 WCM Parameterization and Dataset Simulation

The WCM parameters (A,, and B,,) were computed using 60% of the in situ dataset for
Sentinel-1 VV and VH polarlzatlons For this, 6%, was generated using the CIEM and in situ
data for the input variables of the model. The 60% of in situ dataset were selected randomly. The
rest of the in situ dataset (40%) was used to evaluate the performance of the WCM parameter-
ization. The A,, and B,, were computed for both polarizations using the least-squares
method.*

The PWCM was applied to generate a simulated dataset, where a range between 0 to
5 kg/m? was considered for VWC. This range was used to properly cover the characteristics
of the land cover in the study area varying bare soil to vegetated regions. In this process, 62, as
an input of the PWCM was simulated through the CIEM. The simulation process was performed
by considering broad ranges of soil and SAR parameters as the inputs of the CIEM and PWCM
to generate 62, (see Table 2). The values from the input variables were considered in a wider
range compared to that of the ground measurements to represent more general situations.

The IEM has been semiempirically calibrated by Baghdadi et al.***° In these studies, a fitting
parameter (L°P') was calculated as a function of 8, A, polarization, and radar wavelength. By
replacing L°P* with [ in IEM, the IEM is changed to CIEM [see Egs. (4) and (5) for the C-band].
In this study, the CIEM was applied to generate the simulated data.

L (Byns, 0) = 0.9157 + 1.2289 (sin 0.1543 0)~0313p, @)
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Table 2 The minimum, maximum, and step values of the PWCM and CIEM inputs to generate
synthetic dataset.

Parameters (unit) Min value Step Max value Total elements
M, (vol. %) 5 1 65 60
S (cm) 0.30 0.03 2.10 60
VWC (kg/m?) 0 0.05 5 100
0 (deg) 29 0.1 34 50
37 0.1 40 30

Total elements = 60 x 60 x 100 x (50 + 30) = 2.88 x 10*7

Note: 6, incidence angle; M,,, volumetric soil surface moisture; S, soil surface roughness; and VWC, vegetation
water content.

LY (s, ) = 1.281 4 0.134 (sin 0.19 )" hy. 5)

The simulated datasets were composed of 2.88 x 1017 elements. Table 2 presents the param-
eter boundaries and their steps, which were used to generate the simulated datasets. It is worth
noting that the statistical parameters [e.g., RMSE, R2, bias (estimated 6 — measured ), and stan-
dard deviation] were utilized to determine the efficiency of the simulated datasets and the WCM
parameterization.

After co-registering the preprocessed Sentinel-1 SAR images and the in sifu data, the simu-
lated 6% and 6%, corresponding to the field data were compared to ¢ obtained from the
Sentinel-1 data. Then the statistical parameters were calculated for accuracy assessment.

3.3 Estimating Soil Parameters

Machine learning algorithms have been utilized in many studies to model the complicated rela-
tionship between different variables that are physically related to each other.’**'=% In this study,
the SVR, MSVR, and ANN were used to model the relationship between the simulated datasets,
the soil parameters (output variables), and sensor variables (input variables).

3.3.1 Soil surface parameters modeling using the simulated data

ANNs can model the nonlinear relationships between complex and noisy datasets.*” The ANNs’
structures and processes have been explained by many studies.’>%*%” In this study, a feed-
forward ANN was used to develop the proposed model. SVR can be used for regression issues
and has been widely applied to invert complicated models. The quality of an SVR model
depends on the appropriate regulation of the modeling of SVR. Different types of SVR models
have been effectively utilized for various inversion applications over the last two decades.”®®*
MSVR is another version of the SVR algorithm, which was proposed to model the relationships
between multi-input parameters and multi-output parameters.®!

In this study, the SVR, MSVR, and feed-forward ANN were trained separately using the
simulated datasets, which were generated by the PWCM and CIEM. The MSVR and ANN used
three-dimensional input vectors (63, 6y, and 0) and a two-dimensional output vector (M, at
the depth of 5 cm and S). According to the SVR structure, two separate models were trained for
M, and S retrieval. 25% of the simulated datasets were randomly applied to train the models and
the rest were employed to evaluate the feasibility of the three methods to model the relationship
between variables in the simulated datasets.

In the feed-forward ANN, several hidden layers were considered between the input and out-
put layers. The Levenberg—Marquardt backpropagation algorithm®' was utilized for finding the
best weight and bias. The number of hidden layers and neurons were optimized by GA. The
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kernels within the SVR and MSVR were used to reduce the complexity of the different issues. In
this regard, the polynomial and radial basis function (RBF) kernels, which were commonly
used,”®® were adopted. To obtain the SVR and MSVR with the highest performance, their
parameters, regularization parameter (C), the RBF kernel width (y), and loss function (¢) were
optimized by the GA.

3.3.2 Optimized GA parameters

GA is an optimization method for solving problems based on natural selection that drives bio-
logical evolution. The structure and efficiency of this optimization algorithm have been dis-
cussed and evaluated in different studies.””””> The encodings of ANN parameters are binary.
A range of [10 to 30] and [1 to 5] for the number of neurons in each layer and the number
of hidden layers are, respectively, the optimum values according to Baghdadi et al.’!
Additionally, the SVR and MSVR parameters were encoded by real encoding. According to
Pasolli et al.,'” the ranges of space search for the GA were set to [107*, 10*4], [107>, 10], and
[10‘5, 10] for C, y, and e, respectively. Moreover, the population size of GA was set to 50 to
optimize the parameters.

4 Results and Discussion

4.1 Evaluating Simulated Dataset and WCM Parameters

The 6° values extracted from the Sentinel-1 images were compared with the simulated ¢° values,
which were generated by the CIEM and PWCM. 60% of the in situ datasets were randomly
applied to parameterize WCM (A4, and B, calculation) and to generate the simulated dataset.
Table 3 shows the corresponding accuracies and the estimated values of A, and B, for each
polarization. The rest of the in sifu datasets were divided into three groups to evaluate the accu-
racy of the parameterization and simulated dataset for different VWC values (Fig. 3).

The results demonstrated that the efficiency of the PWCM was similar in both polarizations.
For instance, as VWC increases, RMSE, bias, and StDv increase and R? decreases in the esti-
mation of both polarizations (Fig. 3). According to Fig. 3, PWCM produced the simulated data-
sets that were closer to 6° with VWC lower than 2.5 kg/m”. However, the accuracy of the
PWCM was relatively decreased for VWC higher than 2.5 kg/m? in the VV and VH polariza-
tions. The accuracy of the model for the estimation of ¢” in the VV polarization was better than
that of the VH polarization. However, the model estimation was not generally reliable for
VWC higher than 2.5 kg/m?. The R? values for all validation datasets were equal to 54.7%
and 50.4% in the VV and VH polarizations, respectively. The RMSE values were also equal
to 2.35 and 2.45 dB in these polarizations, respectively. The bias values for all validation datasets
were <0.4 dB. According to the WCM parameterization accuracy (Table 3), the simulated
datasets were not reliable when VWC was higher than 2.5 kg/m?, however, it can be effectively
used for VWC lower than 2.5 kg/m?. The WCM parameterization was considered adequately
fitted for VWC < 2.5 kg/m?. In this case, the RMSE values on the simulated datasets in both VV
and VH polarization were <2 dB and with a bias lower than 0.4 dB. In comparison with the
Sentinel-1,%% used Sentinel-1 data and showed that the WCM estimates ¢° with an RMSE
of higher than 1.5 dB. Results show standard deviations lower than 2 dB for the VWC lower
than 2.5 kg/m?.

4.2 GA Algorithm Results

The GA algorithm was applied to optimize the parameters of the ANN, SVR, and MSVR. The
SVR and MSVR parameters (C, y, and €) reached an optimal solution approximately at the 50th
generation of the algorithm, and the ANN parameters were optimized at the 60th generation. The
optimized SVR and MSVR parameters and the optimized ANN parameters are provided in
Table 4.
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Table 3 WCM parameterization for each polarization (VV and VH) using the training dataset
(VWC is in kg/m?).

ap=VV gp=VH
o Agp = 0.0428, Agp = 0.091,
Polarization B,p = 0.0961 B, = 0.1994
VWC < 1 RMSE (vol. %) 1.44 1.77 T=21
R? (%) 74.8 67.7
Bias (vol. %) —-0.31 0.39
StDv (vol. %) 1.44 1.77
1<VWC<25 RMSE (vol. %) 1.88 1.97 T=18
R? (%) 68.4 64.5
Bias (vol. %) -0.34 -0.23
StDv (vol. %) 1.90 2.02
25<VWC RMSE (vol. %) 2.91 2.95 T=236
R? (%) 39.6 20.2
Bias (vol. %) -0.28 0.35
StDv (vol. %) 2.94 2.97
Overall accuracy RMSE (vol. %) 2.35 2.45 N=115,T=75
R? (%) 54.7 50.4
Bias (vol. %) -0.30 0.22
StDv (vol. %) 2.34 245

Note: N is the number of samples used in the model fitting and T is the number of samples used to evaluate the
accuracy of the models. Ag, and B, are the WCM parameters.

4.3 Accuracy Assessment of the Proposed Method for Simulation Dataset

After parameterization of the WCM and generating the simulation datasets, 25% of the simulated
datasets were randomly applied to train the SVR, MSVR, and ANN machine learning algorithms
to model the relationship between the input variables (63, 6%, and 6) and output variables (M,
and S). The rest of the simulated dataset was utilized to evaluate the accuracy of the models.
Table 4 provides the performance of the SVR, MSVR, and ANN to model the relationship
between variables in the simulated datasets. All methods have reasonably modeled the relation-
ship between the variables of the simulated dataset. In this regard, the ANN and MSVR algo-
rithms had better results compared to those of SVR. According to the ANN and MSVR
structures, they can estimate that multiple output variables can consider the relationship between
the output variables. Thus they can model the inversion of the PWCM and CIEM with better
accuracy by considering all relationships between variables. However, since the SVR estimates
only a single output, it could not efficiently consider the relationship between the output
variables.

4.4 Accuracy Assessment of the Proposed Method for M,, and S Estimation

The estimated M, and S using the trained SVR, MSVR, and ANN were compared with the in
situ data. The algorithm was separately applied to the three subdatasets (i.e., different VWC
values), where the corresponding accuracies are provided in Table 5. Figures 4 and 5 also illus-
trate the regression graphs between in sifu data and the estimated M, and S.
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Fig. 3 The regression between the ¢° values extracted from the Sentinel-1 images and the ¢°
values simulated using the PWCM and CIEM in (a) VV and (b) VH polarizations (VWC: vegetation
water content, RMSE, R?, bias: mean(estimated ¢ — measured ¢), and StDv: standard deviation).

According to Figs. 4, 5, and Table 5, the performances of the trained ANN and MSVR algo-
rithms were approximately similar and were better than that of the trained SVR algorithm.
According to Table 5, the most accurate results for estimating both M, and S were obtained
when VWC was <1.0 kg/m?. The results were also reasonable when VWC was
<2.5 kg/m?. However, the estimation of both M,, and S for VWC > 2.5 kg/m? was unreliable
and had a low correlation with the in situ measurements. According to the WCM parameter-
ization evaluation, the parameterization and models’ estimation behaved similarly for different
VWC values. The results of the WCM parameterization and the trained models showed that the
sensitivity of ¢ to the soil, parameters were reduced when VWC was >2.5 kg/m?. This result
corresponds well to those of other studies such as Refs. 3 and 5.

Comparing the three models, the trained MSVR and ANN algorithms modeled the relation-
ships between SAR and soil parameters (M, and S) better than SVR due to their structures. The
SVR does not consider relationships between output variables (M, and S) and, therefore, could
not accurately invert the combination of PWCM and CIEM. According to the MSVR and ANN
structures, the physical relationships between all input and output variables can be accurately

Table 4 The most optimal parameters for the models along with their accuracies to model the
relationship between simulated dataset variables.

M, S
C 4 € RMSE (vol. %)  R? (%) RMSE (cm) R? (%)
SVR M, 82189 0.935512 0.110785 1.92 98.3
) 3580.2  0.445696  0.047903 0.095 98.5
MSVR 6801.5 0.860418  0.079486 1.42 99.1 0.053 99.6
ANN NLayer(NNeuron) 1.72 98.7 0.063 99.2

3 (22, 22, 20)

Note: C, regularization parameter; y, the RBF kernel width; ¢, loss function; NLayer, the number of ANN hidden
layers; and NNeuron, the number of neurons in each layer.
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Table 5 The performance of the models to estimate soil parameters (VWC is in kg/m?). T is the

number of test samples used to evaluate the accuracy of the models.

M, s
SVR MSVR ANN SVR MSVR  ANN
VWC < 1 RMSE (vol. %) 5.24 4.57 4.70 0.4 0.350 0.360 T =58
R2 (%) 68.4 76.7 755 58.6 68.9 66.2
Bias (vol. %) -0.520 0430 -0.970 -0.07 -0.09 0
StDv (vol. %) 526 459  4.64 04 0340 0.370
1<VWC<25 RMSE (vol. %) 6.48 7.18 6.26 0.460 0.420 0.420 T =45
R? (%) 63.8 64.9 66.3 53.7 61.9 60.9
Bias (vol. %) 1.02 -3 0.470 -0.07 -0.06 0.01
StDv (vol. %) 6.47 6.60 6.32 0.460 0.420 0.420
25<VWC RMSE (vol. %) 8.89 9.01 9.21 0.480 0.460 0.510 T=87
R? (%) 30.7 27.3 26.8 33.6 35.5 29.6
Bias (vol. %) 0.360 0.580 1.75 -0.05 0.01 0.1
StDv (vol. %) 8.94 9.04 9.10 0.480 0.460 0.5
Overall accuracy RMSE (vol. %) 10.04 7.04 7.16 0.610 0.460 0480 T =190
R? (%) 39.7 54.8 53.1 25.3 46.8 44
Bias (vol. %) -6.20 -0.36 -0.08 -0.240 -0.04 0.01
StDv (vol. %) 7.92 7.05 7.18 0.560 0.460 0.490
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Fig. 5 Comparison between the in sifu S and the estimated S using the trained: (a) SVR;
(b) MSVR; and (c) ANN algorithms.

modeled. It is worth noting that these results correspond well with those of several studies such
as Refs. 74 and 75. In summary, the multi-output algorithms (e.g., MSVR and ANN) could invert
a combination of the PWCM and CIEM with better accuracy. Additionally, the proposed meth-
od’s efficiency to estimate M, and S using a combination of PWCM and CIEM with only
Sentinel-1 image was reduced over vegetated agricultural areas with VWC > 2.5 kg/m?>.
There were two main reasons for this: (1) the sensitivity of ¢° to M, and S reduces over the

49°50'0"N ' . 49°50'0"N ' . 49°50'0"N . .
= e h._vim -
49°400"N7 [ 49°40'0"NA [ 49°40'0"N I
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Fig. 6 Estimated soil moisture (M, ) using the trained: (a) SVR; (b) MSVR; and (c) ANN algorithms.
The Sentinel-1 image was acquired on July 7, 2016.
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Fig. 7 Estimated soil roughness (S) using the trained: (a) SVR; (b) MSVR; and (c) ANN algo-
rithms. The Sentinel-1 image was captured on July 7, 2016.

vegetation areas with VWC > 2.5 kg/m? and (2) the PWCM cannot accurately model the total
backscattered radar signal when VWC is >2.5 kg/m?.

After evaluating the proposed methods’ accuracy, the trained machine learning algorithms
were applied to the Sentinel-1 SAR image acquired on July 7, 2016 to retrieve M, and S (see
Figs. 6 and 7). According to Figs. 6(b) and 6(c), the results of the trained MSVR and ANN were
similar and the estimated M, using these models were not very different. However, the result of
the SVR for M, estimation was different from those of the other two models. Similar results were
also observed when the models were compared to estimate S (see Fig. 7).

5 Conclusions

This study investigated the potential of the three machine learning algorithms (feed-forward
ANN, SVR, and MSVR) to invert a combination of PWCM and CIEM using only Sentinel-
1 SAR images to map M, and S. Based on the results of the WCM parameterization, this model
could estimate VV and VH polarizations in the C-band with acceptable accuracies for
VWC < 2.5 kg/m?. Inversion results of the simulated datasets showed that the best results
for M, and S estimation were obtained from the trained MSVR and ANN because of their struc-
tures. Additionally, better results were obtained for vegetated agricultural areas with
VWC < 2.5 kg/m?. This study showed that M, and S can be estimated with reasonable accuracy
when VWC is <2.5 kg/m? (RMSE = 4 to 7 vol. % and 0.35 to 0.46 cm depending on the VWC
values for M, and S, respectively). Current remote sensing SAR sensors (such as Sentinel-1 with
10-m spatial resolution) enable researchers to estimate soil parameters with high spatial and
temporal resolutions. Finally, this study’s results demonstrated that soil parameters can be effec-
tively retrieved with a machine learning inversion method and with the sole use of SAR data
for VWC < 2.5 kg/m>.
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