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ABSTRACT
Soil salinity is a major environmental threat, which has a nega-
tive impact on soil productivity and agricultural fields. One of
the most promising methods for monitoring affected areas,
which has special importance in land management studies, is
through remote sensing technologies. While the potential of
optical imagery in detecting saline soils is widely investigated,
limited studies have been dedicated to assessing the potential
of Synthetic Aperture Radar (SAR) imagery in monitoring soil
salinity. Accordingly, this paper deals with soil salinity estima-
tion using Sentinel-1 SAR imagery in an area which is highly
affected by salinity hazard. Due to lack of a suitable theoretical
model for simulating radar backscatter of soil based on salt
contents, we investigated a new method to relate radar inten-
sity to measured in-situ salinity directly. In the first step,
Sentinel-1 dual polarized VV (Vertical transmit Vertical receive)
and VH (Vertical transmit Horizontal receive) data were acquired
from the study site. A field study was also conducted, simulta-
neously, and the Electrical Conductivity (EC) of several soil
samples was measured. We then extracted some features
based on the intensity images of both VV and VH polarization.
Based on the fact that the target texture affects the radar
response, an analysis of the texture was also performed by
calculating the first and second order statistics, extracted from
the histogram and Gray Level Co-occurrence Matrix (GLCM),
respectively. The Support Vector Regression (SVR) technique,
with different kernel functions, was used to relate explanatory
variables to ground measured salinity. We also applied Feature
Selection (FS) algorithms of the Genetic Algorithm (GA) and
Sequential Feature Selection (SFS) for optimizing the model
and selecting the best explanatory features. The results showed
that ε-SVR with Radial Basis Function (RBF) kernel had the most
accuracy with the Coefficient of Determination (R2) = 0.9783
and Root Mean Square Error (RMSE) = 0.3561 when the GA FS
was applied. Also GFO;VV and RVH had the best performance in
salinity detection. It can be concluded that the intensity images
of VV and VH polarization of SAR imagery have the potential to
discriminate saline surface soils, regardless of the failure of
common backscattering models.
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1. Introduction

Salinization is one of the most hazardous environmental phenomena which leads to
desertification and loss of agricultural productivity (Metternicht and Zinck. 2009;
Shrestha and Farshad 2009; Allbed and Kumar 2013). The extent and severity of this
problem have become more serious over the last years, which makes it inevitable to find
an effective approach for managing affected lands. Remote sensing technology is one of
the most promising and cost-effective tools, which can be used to monitor soil salinity
problems (Singh et al. 2010; Elhag 2016; Allbed and Kumar 2013; Brunner et al. 2007).
Most of the research in this field has been dedicated to assessing the potential of optical
remote sensing for managing affected areas, which can be correctly recognized through
high spectral reflectance of the visible and near-infrared range of the electromagnetic
spectrum. However, for soils with dark colored surface layers and also over coastal areas
where the soil surface is highly affected by moisture content, optical imagery provides
inaccurate results (Aly, Bonn, and Magagi 2007; Saha 2011; Li et al. 2013).

Due to the limitation of optical satellite sensors in detecting salinity and also the
sensitivity of the signal to dielectric properties of materials in microwave wave-
lengths, Synthetic Aperture Radar (SAR) imagery can be more reliable for salinity
monitoring. Theoretically, microwave remote sensing has great potential for asses-
sing soil salinity and mapping the affected regions (Aly, Bonn, and Magagi 2007;
Li et al. 2013; Gong et al. 2013). However, few studies have investigated the potential
of SAR imagery for salinity monitoring (Saha 2011; Barbouchi et al. 2015). Radar
backscattering is mostly influenced by two main factors: (1) sensor parameters,
namely wavelength (λ), polarization (p), incidence angle (Ѳ), and (2) target para-
meters such as surface roughness, slope orientation, and dielectric properties of a
target (Wu and Wang 2011; MirMazloumi and Sahebi 2016). Among these para-
meters, complex dielectric constant of a substance, which is an intrinsic property
of a material (Hasar, Akay, and Kharkovsky 2003), plays an important role in deter-
mining radar backscatter, so that, simulating and evaluating this parameter, in both
real and imaginary part, has been taken into consideration in a number of studies (Li
et al. 2014; Lasne et al. 2008; Bell et al. 2001; Wu and Wang 2011).

The key parameters in determining the dielectric properties of a material are
(1) moisture content, which specifies permittivity (or real part;ε0), and (2) the ionic
conductivity, which markedly affects loss factor (or imaginary part;ε00) (Behari 2005).
Accordingly, it can be interpreted that existence of salt in the soil solution has a
direct effect on the dielectric constant (especially in loss factor), and radar
backscattering values. Generally, defining a relationship between three components
of the conductivity of a material (moisture and salinity), dielectric constant, and radar
backscattering (sigma-naught;σ0) has a crucial role in detecting salinity using radar
remote sensing, the subject, which has been addressed in the previous research. Wu
and Wang (2011) simulated the effect of moisture and salinity on dielectric constant
and the backscattering coefficient of VV (Vertical transmit Vertical receive) and HH
(Horizontal transmit Horizontal receive) polarization using a theoretical Advanced
Integral Equation Model (AIEM). The results of this study showed that the imaginary
part of the dielectric constant increases with salinity. They also concluded that the
backscattering coefficient of VV and HH polarization is influenced by both soil salinity
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and moisture, which can be used to retrieve soil salinity, especially when the soil
moisture is low. In a case study in western Jilin Province, Li et al. (2014) used the
backscattering model AIEM to evaluate the behaviours of the backscattering coeffi-
cient in salt-affected soils. Combined Dobson mixing model and seawater dielectric
constant model were also used to estimate the effect of salinity and moisture on the
dielectric constant. The results of this study revealed the potential of using RADAR
SATellite-2 (RADARSAT-2) data to measure soil salinity; however, they confirmed that
there is no suitable model to estimate the backscattering coefficient based on
changes in salinity values. Lasne et al. (2008) assessed the effect of salinity on the
permittivity of geological materials, using dielectric mixing models. They also simu-
lated the radar backscattering coefficient across different range frequencies
(1–7 GHz) using analytical scattering models Integral Equation Model (IEM) and
Small Perturbation Model (SPM). They concluded that the sensitivity of the back-
scattering coefficient to the salt values relies on the moisture content, which is more
obvious in VV polarization. Aly, Bonn, and Magagi (2007) used several backscattering
models to assess the effect of salinity on the backscattering coefficient. Four
RADARSAT-1 data in standard modes were acquired to be used for validation of
proposed backscatter models. The results of this study showed that high values of
the dielectric constant, due to the salt presence, has a significant effect on the radar
backscattering coefficient. Shao et al. (2003) assessed the real and imaginary parts of
the dielectric constant of soils, which were artificially moistened and salinized, as a
function of salinity, moisture and microwave frequency. The results showed that the
real part of the dielectric constant is strongly influenced by soil moisture, while the
imaginary part is strongly affected by both moisture and salinity, especially at low
frequencies. They also concluded that the C and L bands of the radar data are more
suitable for detecting salinity, due to the greater sensitivity of the imaginary part of
the dielectric constant to soil salinity in these frequencies.

However, a review of the results of previous research shows that developing a
theoretical model, which properly relates the salinity to complex dielectric constant
and backscattering in different polarization modes, has not yet become possible. Since
most of the backscattering models like Dubois Model (DM), SPM, Physical Optical Model
(POM), and IEM only consider the effects of moisture in the soil for modelling, an
evaluation of the effects of salinity on these models cannot be observed. In this regard,
a few studies attempted to change these models by adding conductivity of salty water
instead of free water in order to assess the effect of salinity on modelling the dielectric
behaviour of the material and its effect on the backscattering coefficient. However, the
results of these studies were not satisfactory, which indicate that the available theore-
tical model is not adequate for monitoring salinity by radar remote sensing.

Despite the problems in modelling salinity and relating soil salinity values to radar
satellite data, a direct relationship between Electrical Conductivity (EC) of soils, and
backscattering image has been proven in some cases. Aly, Bonn, and Magagi (2007)
proposed a parametric formulation to determine salinity from RADARSAT-1 data, with-
out a backscattering model. The linear regression analysis was performed, and a good
relationship was observed between the measured salinity of the soil samples and the
radar images, with a coefficient of determination (R2) of 0.8300. Moreover, in a case
study in the Kairouan region of central Tunisia, Grissa et al. (2011) developed an
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empirical model to map soil salinity using intensity images of ENVIronmental SATellite
(ENVISAT) data in VV and HH polarization. The Support Vector Machine (SVM) based
classifier was used to generate a salinity map with three classes of salinity. The results of
this study were satisfactory, however, more soil samples should have been used for
model validation.

Furthermore, due to the impact of the soil texture on the radar response, which is
described by Dobson and Ulaby (1981) and also the distinct texture of saline surface
soils in affected areas, extraction of texture features from satellite data may be useful for
soil salinity estimation by radar imagery. The possibility of using texture analysis for
salinity detection will be also discussed in this paper.

Given the issues raised above, this paper aims to assess the possibility of using
radar imagery to detect salinization. Since the theoretical and empirical models have
not been able to accurately identify the effects of salinity on signal and simulate the
dielectric behaviour of salt composites, this study attempts to investigate a new
method for a direct relationship between soil salinity values, measured in-situ, and
the backscatter of the radar signal from SAR imagery. For this purpose, the Sentinel-1
dual polarized SAR imagery, which is freely available, is acquired. Owing to the fact
that the Sentinel-1 satellite provides continuous imagery of the earth’s surface (day
and night and in all weather conditions) with a high spatial and temporal resolution
(Torres et al. 2012; Fletcher 2012), investigating a direct way to retrieve soil salinity
allows us to monitor affected regions in different climate areas at all times of the
year and various time intervals. Furthermore, using the direct way to characterise
salinity does not need to obtain soil parameters such as volumetric soil moisture
(mv), soil surface temperature (Ts), bulk or specific density (ρb; ρs), percentage of soil
particles, etc., which are used for simulating complex dielectric constant, and also it
does not require to assess validity domain of backscattering models (DM, SPM, POM,
etc.). This methodology will now be discussed in more detail.

2. Materials and methods

2.1. Study area and datasets

Kuh Sefid is a village located in the Central District of Qom County, Qom, Iran. This
area, which has a hot and dry climate with annual precipitation of about 115.5 mm,
the highest temperature of 39.7°C in July and the lowest temperature of 0.4°C in
December, is affected by severe salinity hazard mainly due to the vicinity to the Salt
Lake Qom. The surface soil texture in this region varies between silt loam to silty clay
loam, which has a yellowish brown to dark brown colour (Fallahi, Banaei, and
Eskandarzadeh 1983). From this region, several soil samples were taken and their
salinity was measured to be used as ground truth data.

The Sentinel-1 SAR imagery, in the Interferometric Wide (IW) mode, C-band, with dual
polarization VV (Vertical transmit Vertical receive), VH (Vertical transmit Horizontal
receive), was acquired on 1 March 2017, in coincidence with field observations.
Figure 1 shows the Kuh Sefid district image and distribution of the soil samples in the
study site, obtained from Google Earth imagery. The colour composite image of the
Sentinel-1 data in this region (Red: VV, Green: VH, Blue: VH/VV) is also shown in Figure 2.
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Figure 1. (a) Location of Qom County in Iran, (b) Location of Kuh Sefid in the central district of
Qom County, (c) Kuh Sefid district image acquired from Google Earth and distribution of the soil
samples in the study site.
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2.2. Field investigation and measuring salinity

The field observations were carried out on 4 March 2017, and 58 soil samples were
randomly collected. Soil samples were then analysed in the laboratory, and the EC of
samples was measured. For this purpose, the method of measuring the electrical con-
ductivity of the soil-water extract, with a fixed soil solution ratio of 1:1, proposed by
Richards (1954), was used and the conductivity of solution was measured by Conductivity
Pocket metre (WTW Cond 330i) at 25.0°C. The spatial location of soil samples and their
corresponding measured EC, in unit of decisiemens per meter (dS m−1), were stored to be
used as ground-truth data. These image and ground-truth data sets can be found online
in (Remote Sensing Laboratory 2018).

2.3. Used methodology

Since the single-phase image of SAR imagery, which can be derived from the Single
Look Complex (SLC) data of Sentinel-1, does not provide any information to be used for
salinity detection, only the intensity of the Sentinel-1 product was considered for
analysis. The phase information can be applied to studies in which the temporal changes
of salinity would be estimated by the interferometry SAR (InSAR) technique as discussed
in Barbouchi et al. (2015).

Figure 2. The colour composite image of the Sentinel-1 data from Kuh Sefid region (Red: VV,
Green: VH, Blue: VH/VV).
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Accordingly, data preparation was firstly performed through several pre-processing
steps: radiometric calibration, speckle filtering, and geometric and terrain correction.
Then, sigma-naught images in both VV and VH polarization were derived according to
Lee and Pottier (2009). In addition to single images of sigma-naught, amplitude images
in both polarization and also the ratio between VV and VH backscattering images were
extracted, as shown in Table 1, to assess whether it contained valuable information for
salinity detection.

In addition to mentioned features, which were extracted from radar intensity, texture
analysis based on radar images in two polarization modes was performed to assess its
potential to detect saline surface soils. Image-based texture features which specify the
spatial distribution of radar brightness values in the image can be used to discriminate
affected regions. Therefore, texture features were extracted by calculating histogram-
based features, from first-order statistics and also second-order statistics extracted from
the Gray Level Co-occurrence Matrix (GLCM) that considers the relative position of the
pixels with respect to each other (Vijayarekha 2014). Table 1 shows all the features that
were extracted for analysis with their formula.

where A and I refer to Amplitude and Intensity of SAR image, E0;x and E0;y are the
electric field in the x and y direction, σ0 is the averaged radar cross section per unit area,

Table 1. Extracted features from radar intensity and analysis of textures.
Name Formula Source

Radar Intensity Amplitude A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E20;x þ E20;y

p
(Lee and Pottier 2009)

Sigma-naught
σ0 ¼ 4πr2

A0

ES2j j
EIj j2

(Lee and Pottier 2009)

Ratio σ0VH=σ
0
VV, IVH=AVV, IVV=AVH (Chunming et al. 2005; Lee et al.

1994)
Histogram-Based Textures
(first order)

Mean
¼ PNg

i¼1
ip ið Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Variance
σ2 ¼ PNg

i¼1
i�ð Þ2p ið Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Skewness
s ¼ σ�3 P

Ng

i¼1
i�ð Þ3p ið Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Kurtosis
k ¼ σ�4 P

Ng

i¼1
i�ð Þ4p ið Þ � 3

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Entropy
EFO ¼ �PNg

i¼1
p ið Þlog2p ið Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Energy
GFO ¼ PNg

i¼1
p ið Þ2

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Grey Level Co-occurrence
Matrix Textures
(second order)

Correlation
R ¼ PNg

i¼1

PNg

j¼1

i�xð Þ j�yð Þp i;jð Þ
σxσy

(Materka 1998; Vijayarekha 2014)

Contrast
C ¼ PNg

i¼1

PNg

j¼1
i � jj j2p i; jð Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Homogeneity
H ¼ PNg

i¼1

PNg

j¼1

p i;jð Þ
1þ i�jj j2

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Dissimilarity
D ¼ PNg

i¼1

PNg

j¼1
i � jj jp i; jð Þ

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Entropy
ESO ¼ PNg

i¼1

PNg

j¼1
p i; jð Þ½ �2

(Materka and Strzelecki 1998;
Vijayarekha 2014)

Energy
GSO ¼ �PNg

i¼1

PNg

j¼1
p i; jð Þlog2 p i; jð Þ½ �

(Materka and Strzelecki 1998;
Vijayarekha 2014)
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EI and ES are the incident electromagnetic wave and the scattered wave, respectively.
p ið Þ is a first order probability, which defines as p ið Þ ¼ Ni=M, Ni is the number of pixels
of grey value i in the window, M is the total number of pixels in the neighbourhood
window of specified size centred around the pixel. Ng is the total number of grey levels
in the image, p i; jð Þ is a second-order joint probability of two pixels i and j, σxandσy are
the standard deviations of the row and column sums of the GLCM.

Based on the spatial location of the soil samples, the corresponding pixel values from all
the described features were extracted to be used for relating ground measured salinity and
Sentinel-1 derived features. The Support Vector Regression (SVR) algorithm, proposed by
Vapnik, Golowich, and Smola (1996), was used to evaluate the possibility of creating a direct
relationship between measured soil EC and corresponding satellite features. Since the SVR
maps the input data on to a higher dimensional feature space, it can be more applicable
than other regression techniques, especially in non-linear cases. Different Kernel functions
which include (1) Linear, (2) Polynomial in different degrees, and (3) (Gaussian) Radial Base
Function (RBF), from the ε-SVR model, were selected to be used in the analysis. In order to
achieve a better model fit, the optimization processes should be performed for each model,
which is considered in two main steps: First, the Parameter Selection of ε-SVR, that was done
for selecting a parameter of each kernel function and was based on all explanatory variables.
Second, the Feature Selection techniques for improving the model performance and
selecting the best features. It is important that the selected parameters from the first step
remain unchanged for comparing the constructed models. The Genetic Algorithm (GA) and
Sequential Feature Selection (SFS) methods were applied for feature selection by criteria of
minimizing Root Mean Square Error (RMSE) andmaximizing coefficient of determination (R2)
values. Based on the results of the analysis, the constructed models were used to map soil
salinity for all the scene. Figure 3 indicates the flowchart of the proposed method.

Figure 3. Flowchart of the proposed method.
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As can be seen in the flowchart of Figure 3, various features were extracted from the
texture analysis and the intensity of the radar in the VV and VH polarization of Sentinel-1
data in the study site. Salinity was also measured for several soil samples in the Kuh Sefid
region. The SVR technique with different kernel functions was used to relate measured
salinity to corresponding explanatory variables, including radar intensity features and
image-based texture features. The optimization processes were also performed by
Parameter Selection of ε-SVR and Feature Selection algorithms (GA and SFS). Based on
the obtained results and performing the accuracy assessment, the constructed models
are used for estimating the salinity map of the study site.

3. Results and discussion

3.1. Model building and validation

3.1.1. Remove bad features
Evaluating the 31 feature images that were extracted from the VV and VH polarization of
Sentinel-1 data, indicated that some features are not suitable for analysis. Some of them
had similar values in the image, which makes it difficult to retrieve salinity from them.
Some others were noisy in both polarization modes and there was no apparent relation-
ship between the extracted features and the measured salinity values. Based on the
observations, inappropriate features were excluded from the data cube and the SVR
technique was performed, with 19 features, to relate Sentinel-1 (VV and VH) data and its
derived features to measured soil EC values.

3.1.2. Data splitting and optimization procedures
To run the algorithm, the data cube was divided into two separate parts: the train (70%)
and the test (30%) data, which were used for model building and validation, respec-
tively. In the first step, the parameter optimization of ε-SVR was done for each kernel
function. Table 2 shows the selective parameter of each kernel and their estimated
values. In the second phase, GA and SFS were performed on the data and the best
features were selected. Table 3 shows the GA parameters which were used for selecting
and processing the features. The search process of GA for different kernel function of
SVR is also shown in Figure 4.

3.1.3. Accuracy assessment
The analysis was performed to estimate the soil EC from the radar backscattering of
Sentinel-1 data, and accuracy assessment was done based on R2, RMSE, and Normalized
Root Mean Square Error (NRMSE) values obtained from the ε-SVR method. The results of

Table 2. Kernel functions and their selective parameters of SVR.
Kernel Function Formula Selective parameter

Linear xTy C ¼ 1:000; ε ¼ 0:100
Polynomial (degree 1) γxTy þ r

� �d d ¼ 1; C ¼ 11:313; γ ¼ 0:088; r ¼ 5:656; ε ¼ 0:100
Polynomial (degree 2) d ¼ 2; C ¼ 0:500; γ ¼ 0:044; r ¼ 0:353; ε ¼ 0:100
Polynomial (degree 3) d ¼ 3; C ¼ 0:031; γ ¼ 0:031; r ¼ 0:031; ε ¼ 0:100
Radial Base Function (Gaussian) expð�γx � y2Þ C ¼ 8:000; γ ¼ 0:004; ε ¼ 0:062
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the regression analysis and accuracy assessments for different kernel functions is shown
in Table 4. In addition, the optimal features that were selected based on FS processing
were also presented.

3.1.4. Generating soil salinity maps
The results of regression models were used to generate salinity maps of the study site.
For each kernel function, three salinity maps were generated based on (1) all explana-
tory variables, (2) selected variables of SFS, and (3) selected variables of GA. Figures 5–7
show estimated salinity maps for each kernel function of ε-SVR.

The obtained results are as follows:

(1) The obtained results from ε-SVR with different kernel functions indicate that
the best accuracy is provided by Gaussian (RBF) kernel with R2 = 0.9783 and
RMSE = 0.3561 when the GA Feature Selection is applied. This reveals the more
efficiency of RBF kernel function than other ε-SVR kernels. Moreover, the
comparison between optimization algorithms shows that GA is more efficient

Table 3. Incorporated GA parameters.
Parameter Value

Population size: specifies how many individuals there are in each generation. 20
Elitism ratio: specifies the number of individuals that are guaranteed to survive to the next generation. 1
Crossover fraction: specifies the fraction of the next generation. 0.7
Crossover method one point
Mutation ratio: specifies how the genetic algorithm makes small random changes in the individuals in
the population to create mutation children.

0.05

Maximum generation: specifies the maximum number of iterations for the genetic algorithm to perform. 100

Figure 4. Search process of GA for different kernel function of SVR, (a) Linear, (b) Poly degree 1,
(c) Poly degree 2, (d) Poly degree 3, and (e) RBF.
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Table 4. Accuracy assessment of constructed models.

SVR Kernel function

Feature
selection
algorithm

Train/
Test R2 RMSE NRMSE Selected feature

Linear Kernel – – Test 0.8674 2.9535 0.3903 All
Train 0.8569 1.2459 0.1572

SBS Test 0.6720 1.8666 0.2467 HVV, GFO;VV, RVV, HVH, GFO;VH, RVH, σ0VH, σ0VV,
AVH, AVV, IVH=AVVTrain 0.3729 2.8850 0.3640

GA Test 0.7303 1.6543 0.2186 GFO;VV, HVH, GFO;VH, EFO;VH, RVH, IVH=AVV
Train 0.5829 2.2583 0.2849

Polynomial Kernel
degree 1

– – Test 0.8674 2.9533 0.3903 All
Train 0.8569 1.2459 0.1572

SBS Test 0.6720 1.8666 0.2467 HVV, GFO;VV, RVV, HVH, GFO;VH, RVH, σ0VH, σ0VV,
AVH, AVV, IVH=AVVTrain 0.3729 2.8850 0.3640

GA Test 0.7303 1.6542 0.2186 GFO;VV, HVH, GFO;VH, EFO;VH, RVH, IVH=AVV
Train 0.5829 2.2583 0.2849

Polynomial Kernel
degree 2

– – Test 0.9194 2.4923 0.3293 All
Train 0.8173 1.4424 0.1820

SBS Test 0.9185 2.1823 0.2884 DVV, EFO;VV, VV, RVV, EFO;VH, VH, RVH, σ0VH,
σ0VV, AVH, AVV, σ0VH=σ0VV, IVH=AVVTrain 0.8142 1.4543 0.1835

GA Test 0.9002 1.9428 0.2567 GFO;VV, EFO;VV, VV, GFO;VH, VH, AVH, IVH=AVV
Train 0.7615 1.6276 0.2053

Polynomial Kernel
degree 3

– – Test 0.6223 2.4314 0.3213 All
Train 0.7647 1.6241 0.2049

SBS Test 0.9545 0.9444 0.1248 GFO;VV, EFO;VV, VV, RVV, GFO;VH, EFO;VH, RVH,
σ0VH, σ0VV, AVH, AVV, σ0VH=σ0VV, IVH=AVV,

IVH=AVV
Train 0.5535 2.1603 0.2725

GA Test 0.9545 0.9444 0.1248 GFO;VV, EFO;VV, VV, RVV, GFO;VH, EFO;VH, RVH,
σ0VH, σ0VV, AVH, AVV, σ0VH=σ0VV, IVH=AVV,

IVH=AVV
Train 0.5535 2.1603 0.2725

RBF Kernel – – Test 0.9297 0.6651 0.0879 All
Train 0.7396 1.9166 0.2418

SBS Test 0.9783 0.3561 0.0471 GFO;VV, EFO;VV, VV, EFO;VH, VH, σ0VV, AVV
Train 0.7324 1.9941 0.2516

GA Test 0.9783 0.3561 0.0471 GFO;VV, EFO;VV, VV, EFO;VH, VH, σ0VV, AVV
Train 0.7324 1.9941 0.2516

Figure 5. Result of EC mapping using SVR model with all input features in different kernels, (a) linear
kernel, (b) polynomial kernel degree 1, (c) polynomial kernel degree 2, (d) polynomial kernel degree 3,
and (e) radial base function.
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than SFS due to providing fewer number of selected features and lower RMSE
values in most of the kernel functions.

(2) The predicted EC maps obtained from different input features and various
kernel functions represent a relatively uniform pattern within the study site.
This pattern shows high salt contents in the central parts of the Kuh Sefid. The

Figure 6. Result of EC mapping using SVR model with GA feature selection in different kernels,
(a) linear kernel, (b) polynomial kernel degree 1, (c) polynomial kernel degree 2, (d) polynomial
kernel degree 3, and (e) radial base function.

Figure 7. Result of EC mapping using SVR model with SFS feature selection in different kernels,
(a) linear kernel, (b) polynomial kernel degree 1, (c) polynomial kernel degree 2, (d) polynomial
kernel degree 3, and (e) radial base function.
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soil EC values have gradually declined with increasing the distance from the
central parts of the Kuh Sefid; however, the decrease in east part of the Kuh
Sefid is more sharply and high EC values can be seen in some parts of the
west and north-west of the site.

(3) Comparison of generated soil EC maps provided by different kernel functions
reveals that using degree 2 polynomial kernel function increases the range of
variation of EC values in the scene from 0 dS m−1 to 40 dS m−1, producing
intensified salinity maps. Increasing the range of EC variations is also observed
in other kernel functions when all explanatory variables are used (SVR with
Gaussian kernel being an exception) which may be due to large number of
input features.

(4) Evaluating the generated salinity maps obtained by linear and degree 1 polynomial
kernel functions shows high similarity between EC maps in all three cases. This
similarity can also be observed in their calculated R2-RMSE values and also their
optimum selected features, as shown in Table 4. Although the spatial pattern of
predicted EC values in these maps are fairly similar to others, a dramatic fluctuation
can be observed in EC values all over the scene, which leads to producing noisy
maps. The calculated R2 values in both kernels are also lower than other cases when
optimization algorithms (GA and SFS) were used, confirming that their correspond-
ing EC maps are less reliable.

3.2. Discussion

The results of the present study, performed to retrieve soil salinity from Sentinel-1 SAR
imagery by using ε-SVR technique and analysis of texture, revealed the following main
findings:

(1) The backscatter image of Sentinel-1 radar imagery in the VV and VH polarization
modes alongside an analysis of texture features (first- and second-order), have
great potential to estimate soil salinity in microwave wavelengths, regardless of
the failure of common backscattering models and soil moisture content. This
indicates that radar intensity and its derived texture images have valuable infor-
mation, which can be used for monitoring salinity.

(2) Although the theoretical and empirical models are unable to simulate radar
backscatter of salt-affected regions and relate salinity values to radar response,
developing a direct relationship between intensity values of the VV and VH
polarization of Sentinel-1 data and in-situ salinity measurements is provided in
this study by using ε-SVR. This represents the ε-SVR as a powerful regression
technique for model building, especially when the case is non-linear.

(3) Applying various decomposition techniques to Polarimetric SAR data, which
provides new features with different characteristics, may be useful for detecting
salinity based on radar signal. However, since the Sentinel-1 data is a dual
polarized (VV and VH) radar instrument, evaluating the effect of decomposition
product for salinity detection was not applicable to this study. An assessment of
the potential of quad-pol SAR data for detecting salinity in future studies is highly
recommended. We also did not take account of the phase information, which
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could be extracted from Sentinel-1 data, since the single-phase image is a random
noise and does not provide any information. Phase information can be more
practical in multi-year studies of salinity when salt-affected regions change with
time and temporal changes in soil conductivity may appear through the InSAR
technique as discussed in Barbouchi et al. (2015).

(4) Although the obtained results show good performance in estimating salinity,
and the constructed models are valid in most of the kernel functions, the
applied models are not fully generalizable yet. Given the fact that the radar
backscattering is influenced by soil conductivity, developing a theoretical model
to relate salinity, soil moisture, complex dielectric constant and radar signal, is a
pivotal task.

4. Conclusion

This paper has focused on evaluating the potential of dual polarized SAR imagery in
monitoring soil salinity. Due to lack of a proper backscattering model for simulating
radar backscatter of soil based on salt content, less attention has been paid to use
Radar remote sensing for salinity monitoring, and most of the researches in this field
have been dedicated to evaluate the spectral behaviour of salt-affected soils in the
visible and near-infrared range of the electromagnetic spectrum. However, assessing
the possibility of using radar imagery to retrieve soil salinity and creating a relation-
ship between measured soil salinity and radar data have special importance, helping
to cover the weakness of the developed backscattering models in this field.
Accordingly, this study aimed to investigate the direct relationship between mea-
sured salinity (EC) and radar images, provided by the Sentinel-1 SAR satellite. To this
purpose, intensity images in VV and VH polarization and also image-based texture
features were extracted from satellite data to be used as explanatory variables. Model
building was performed using the ε-SVR techniques, and the best result was pro-
vided by the Gaussian kernel when GA utilized for the optimization process. The
results of this study revealed that although simulating the radar backscatter of soil
performed by backscattering models has been failed in salt-affected regions, SAR
data has enough capability to discriminate saline soils directly. This study can be
considered as a starting point for further exploitation of SAR imagery in soil salinity
monitoring. Utilizing the potential of quad-polarized SAR images in different fre-
quency bands (P, L, C, X) and also applying various decomposition techniques to SAR
data for generating salinity models is recommended for future studies.
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