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Chapter 9
Use of Multispectral and Hyperspectral
Satellite Imagery for Monitoring
Waterbodies and Wetlands

Mahdi Hasanlou and Seyd Teymoor Seydi

Abstract Timely and accurate change detection (CD) of Earth’s surface features is
important for understanding interactions between human and natural phenomena.
Remote sensing (RS) as the most important information resource plays a role key in
monitoring and assessment of the environment. One of most applications of
hyperspectral imagery is CD. The hyperspectral imagery provides more details
from CD compared to multispectral images. Wetlands are one of the most influential
ecosystems in the natural environment for which it is very difficult to find an
alternative. The monitoring wetland and waterbody areas based on RS imagery
need special techniques due to some limitations (existence noise and condition
atmospheric, need to high training data and threshold selection, and complexity of
water body areas). Based on these problems it is necessary to CD methods to
minimize problems so, this research proposed a framework for hyperspectral CD
methods on wetland and water body areas. The proposed method is based on
incorporating chronochrome, Z-score analysis, Otsu algorithm, SImplex via Split
Augmented Lagrangian (SISAL), Harsanyi–Farrand–Chang (HFC), Pearson corre-
lation coefficient (PCC), and support vector machine (SVM) to detect changes using
hyperspectral imagery. The proposed method is applied in four main steps: (1) pro-
duce a training data for tuning SVM and kernel parameters, (2) predicted change
areas based on a chronochrome algorithm and binary change map obtained using
SVM classifier, (3) the amplitude of changes is created by Z-Score analysis and
binary change mask, and (4) the multiple change map is produced based on the
estimation of number and extraction of endmembers and similarity measure. To
evaluate the performance of the proposed method, multi-temporal hyperspectral
Hyperion images for Shadegan Wetland were used. The results show high accuracy
and low false alarms rate of proposed method methods with an overall accuracy of
more than 96%, kappa coefficient of more than 0.82. Besides, the proposed method
can provide ‘multiple changes’ as well as the magnitude of the extracted changes.
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9.1 Introduction

Wetlands are one of the most influential ecosystems in the natural environment for
which it is very difficult to find an alternative (White et al. 2015). The US Army
Corps of Engineers defined wetlands as “Those areas that are inundated or saturated
by surface or groundwater at a frequency and duration sufficient to support, and that
under normal circumstances do support, a prevalence of vegetation typically adapted
for life in saturated soil conditions.” Wetlands cover nearby 6–7% of the earth’s
surface (Keramitsoglou et al. 2015; Mereta et al. 2012). The wetlands and waterbody
areas have provided many vital benefits for the environment which are improving the
quality of water, controlling the soil erosion, recharging underground water tables,
sustaining against flooding, filtering toxic material and sediments, providing a
defense mechanism against sandstorms, and providing food and habitat for wildlife
(Romshoo and Rashid 2014; Jiang et al. 2014; Whiteside and Bartolo 2015).

The earth’s ecosystems are continuously changing due to natural phenomena
(flood, drought) and human activities (urban developing) (Gibbes et al. 2009). The
wetland changes originated from some events that included dry seasons, alterations
in groundwater, and habitat heterogeneity (Taminskasa et al. 2013; Romshoo and
Rashid 2014; Rapinel et al. 2015). Fig. 9.1 presented the change of the Shadegan
wetland during 1991 through 2015.

Remote sensing (RS) plays a role key in the monitoring of the changes in the
environment, especially in wetlands, on different scales (Mabwoga and Thukral
2014; McCarthy et al. 2015). In fact, RS can provide data from the environment on a
large scale and real time with minimum cost and time consumption (Bovolo and
Bruzzone 2015; Gómez et al. 2016). These properties have made RS a very effective
approach in the fields of earth and environment sciences, especially in change
detection applications (Liu 2015; Huang et al. 2017; Storey et al. 2017).

Change detection (CD) is a process that aims to measure the difference between
two objects at different times (Lu et al. 2011; Singh 1989). One benefit of the CD is
to help manage a system more efficiently by using a multi-temporal dataset
(Thonfeld et al. 2016). Also, detection of changes can help us create accurate change
models based on past information to avoid disastrous events (Hegazy and Kaloop
2015; Thonfeld et al. 2016). With the development of RS systems, it is possible to
obtain data from objects in the high spectral resolution which is known as
hyperspectral imagery (George et al. 2014). The high spectral resolution of the
data helps with distinguishing objects that seem very similar (Seydi and Hasanlou
2018; Barrett 2013; Smith 2012; Yuen and Richardson 2010).

During recent years, the most relevant studies on CD in wetlands have been using
remote sensing data. Sica et al. (2016) study on the Paraná River Delta located in
Argentina, where change analysis was performed based on post-classification via the
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Fig. 9.1 The change of the
Shadegan wetland. (a)
Landsat image in December,
2015, (b) Landsat image in
December, 2012, (c)
Landsat image in December,
1995 and (d) Landsat image
in December, 1991
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supervised method and support vector machine (SVM) classifier. Also, Seydi and
Hasanlou (2016) studied the Shadegan wetlands located in Iran. This research
proposed a new hybrid method for detecting changes that used a semi-supervised
method based on iteratively reweighted multivariate alteration detection (IR-MAD)
algorithms, Z-score analysis, and Otsu algorithm. They also used hyperspectral
image datasets. In an older study, Ghobadi et al. (2015) studied the Al-Hawizeh
wetlands located in the southwest region of the Iran-Iraq border. For change anal-
ysis, they used maximum likelihood as the post-classification method and classifier
on the Landsat datasets (OLI,1 MSS,2 and ETM3).

Mousazadeh et al. (2015) studied Anzali wetlands in Iran, where their approach
integrated supervised classification using maximum likelihood classifier and zonal
and object-oriented image analyses. Also, in their study, Landsat 8 and digital
topographic maps datasets were used. In another work, Yang and Yan (2016)
conducted a change analysis study on Poyang Lake wetland in China where they
used supervised classification procedures using error-correcting output code
(ECOC) and SVM algorithm. Also in their study, the hydrological data and remotely
sensed data contained TM,4 ETM, OLI, and TIRS.5 Gunawardena et al. (2014)
monitored the eastern river basin region in Sri Lanka using supervised classification
methods and Landsat datasets including ETM+,6 ALOS7-AVNIR-2,8 and ALOS-
PALSAR9 images. Capella Zanotta et al. (2013) studied the central portion of South
American areas, specifically the Brazilian Pantanal. They have investigated auto-
matic hybrid methods based on expectation-maximization (EM) and image differ-
ence detection. Also, their method showed improvements in CD efficiency by
incorporating morphology operators using Landsat dataset for change analysis.
Kayastha et al. (2012) analyzed an area in northern Virginia for CD using Z-score
and the tasseled cap algorithm. In their paper, threshold selection was performed
based on time series analysis of Landsat ETM datasets.

By considering both the CD methods and the employed datasets in related
literature, it can be observed that there are several challenges in CD on wetland
regions. Firstly, we can see that the most frequently used procedure for CD is the
post-classification method. Secondly, the most widely used image datasets for the
application of CD in wetland areas are different types of Landsat imagery. Therefore,
there is a lack of research based on hyperspectral images for CD applications. On the
other hand, hyperspectral imagery has displayed high potential for many

1Operational Land Imager.
2Multispectral Scanner System.
3Enhanced Thematic Mapper.
4Thematic Mapper.
5Thermal Infrared Sensor.
6Enhanced Thematic Mapper Plus.
7Advanced Land Observation Satellite.
8Advanced Visible and Near Infrared Radiometer type 2.
9Phased Array type L-band Synthetic Aperture Radar.
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applications such as classification and CD. Also, several studies have been
conducted about this type of imagery (Hasanlou et al. 2015; Kumar and Sinha
2014) which can be considered to be applied in monitoring changes in the wetlands
and waterbody areas.

The CD methods using RS imagery can be divided into five groups. The first
group includes post-classification comparison-based procedures (Castellana et al.
2007).

The first group of methods includes similarity-based methods where the spectral
signature of objects is measured (Adar et al. 2012). The advantages of these methods
include the simplicity of implementing them and their low computational cost.
Nevertheless, they can be affected by noise and atmospheric conditions, need to
threshold selection (Liu 2015; Shah-Hosseini et al. 2015).

The second group is the transformation-based methods where the dataset is
transformed from image space to another space (Pieper et al. 2015; Shah-Hosseini
et al. 2015; Vongsy 2007). These methods have high potential in processing data
with high dimensionality and, thus, high capability in CD. The common
transformation-based methods include principal component analysis (PCA) (Vongsy
et al. 2009), multivariate alteration detection (MAD) (Nielsena and Müllerb 2003),
chronochrome (CC) (Eismann et al. 2008), and cross equalization (CE) (Eismann
et al. 2008). The main disadvantage of this method, need to threshold selection and
finding informative principles for the extraction of changes.

The third group is the post-classification comparisons which are widely used for
detecting changes based on comparing classified images in a pixel by pixel class
label manner (Dronova et al. 2011; Lee 2011; Zhao et al. 2010). This group provides
“multiple-change” or “from-to” information and is not affected by the atmospheric
conditions and sensor differences in the acquisition data. However, prior knowledge
for the training set is necessary for this group, which is a big challenge for supervised
methods due to the fact that acquiring training sets in multi-temporal datasets can be
very difficult (Liu 2015; Shah-Hosseini, Homayouni, and Safari 2015). When using
hyperspectral imagery, it is inevitable to use dimension reduction procedures due to
the Hughes phenomenon (Samadzadegan et al. 2012). Also, for unsupervised
methods, it is necessary to label the classes to be able to analyze the change map
(Shah-Hosseini et al. 2015). The accuracies of both supervised and unsupervised CD
methods depend on the performance of the utilized classifier algorithm (Liu 2015;
Pacifici 2007; Shah-Hosseini et al. 2015). The common supervised post-
classification comparison-based methods are maximum likelihood (ML) (Lee
2011; Mousazadeh et al. 2015; Yang and Yan 2016), SVM (Sica et al. 2016;
Yang and Yan 2016), and random forest (RF) classifiers (Franklin et al. 2015).
Also, the common unsupervised methods are ISODATA10 classifier (Omo-Irabor
2016), fuzzy C-means (FCM) (Ghosh et al. 2011), and K-means (KM) (Fröjse
2011).

10Iterative Self-Organizing Data Analysis Techniques.
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The fourth group of CDmethods that use hyperspectral imagery uses direct multi-
date classification (DMC) based on using one classifier algorithm on stacks of multi-
date datasets (Ahlqvist 2008). In this group, due to the utilization of one classifier,
the computational cost of classification is low. However, this group of method
suffers from drawbacks such as providing little knowledge about the “from-to”
information and the fact that for supervised methods, it is necessary to have training
sets, and also, they need high computational space for process (Shah-Hosseini et al.
2015; Yuan et al. 2005).

The fifth group is hybrid-based procedures that combine the previous methods in
order to achieve new automatic or unsupervised methods (Shah-Hosseini et al. 2015;
Bovolo et al. 2012).

We described five CD groups and briefly investigated their pros and cons.
Generally, there are many challenges in hyperspectral change detection including
(1) the outputs of many segment-based threshold selection procedures are not
perfect; therefore, these methods require clear histograms of change and no-change
areas. Also, some CD methods require hyper-parameter tuning, which is necessary
to be performed based on experimental knowledge (Shah-Hosseini et al. 2015).
(2) Many of the automatic methods do not provide information about the nature of
changes but only provide the binary change maps, while multiple-change informa-
tion is important for decision-making. Moreover, these methods do not provide the
amplitude of changes (Hussain et al. 2013; Shah-Hosseini et al. 2015). Also, some
CD methods need to have knowledge-based threshold that it is hard to set. (3) How-
ever, the post-classification and direct classification methods could provide a
multiple-change map or “from-to” information, but these methods are supervised;
therefore providing training data is inevitable. However, collection of this training
data can be very difficult, and (4) as described in the literature review in the previous
section, many of the studies used multispectral dataset to monitor the wetland
regions; therefore, there is a lack of research that investigates the capabilities of
hyperspectral imagery in CD in wetlands and waterbody areas. Nevertheless, a series
of spaceborne sensors (e.g., EnMAP,11 PRISMA,12 and HyspIRI13) will be launched
on a schedule that will increase the availability of hyperspectral imagery with
improvement in data quality. With this regard, it is necessary to utilize datasets
that provide more detail about changes.

Wetlands are very sensitive ecosystems, which implies that monitoring of their
changes is necessary for protecting them. In order to provide a monitoring frame-
work to address this issue, we need to focus on informative image datasets and
accurate methods. The CD problem could be solved in a simple framework. There
are many novel algorithms proposed by researchers for the detection of changes
using hyperspectral imagery that solved CD in a complex framework. Therefore,
these novel methods improve the performance of CD, but the CD problems become

11Environmental Mapping and Analysis Program.
12PRecursore IperSpettrale della Missione Applicativa.
13Hyperspectral Infrared Imager.
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more complex and hard. So, this research proposed a CD method for hyperspectral
imagery on wetland and waterbody areas using conventional algorithms. The main
novelty proposed method is a simple theme nonetheless preserved accuracy. In
addition, the proposed method could be applied in an automatic framework and
provides more details of the nature of changes. The main purpose of this chapter is to
propose a CD hybrid method that addresses the previously mentioned CD issues. In
addition, this study has a number of minor objectives including (1) sensitivity
assessment of different kernel functions on hybrid change detection (HCD) and
(2) evaluating the effects of normalization steps on input data on the performance of
the SVM classifier. In fact, the proposed method is a new HCD method based on the
Otsu algorithm, CC, Z-score, PCC,14 and SVM and has three phases including
(1) global predictor phase, (2) analysis phase, and (3) decision phase. More specif-
ically, the global predictor phase uses CC algorithm for highlighting change and
no-change area; the analysis phase uses the SISAL,15 HFC,16 and Z-score analysis
for data analysis, and the decision phase uses the SVM classifier, Otsu algorithm,
and PCC to obtain the binary change map, the amplitude of change map, and the
“multiple-change” information map. The criteria selection mentioned methods in the
proposed framework are simple for implementation and robust for the analysis of
high-dimensional data. In addition, the source codes of these methods are available
and can be found online at http://rslab.ut.ac.ir. This hybrid method benefits from
several advantages that distinguish it from other HCD methods including (1) sensi-
tivity to subtle changes with high accuracy and low false alarm rates, (2) providing
the “multiple-change” information and amplitudes of changes in addition to binary
change map, (3) simple implementation compared to common HCD methods,
(4) low computational cost and the ability to process high-dimensional data, (5) no
need for training set or its unsupervised framework, and (6) incorporating
hyperspectral datasets which have high potentials in most applications especially
for CD analysis. The rest of this chapter is organized as follows: Section 9.2
describes the general proposed methodology. The details of the proposed method
are presented in Sects. 9.3 and 9.4 presents the experimental results of this method.

9.2 Proposed Hybrid Method

This section investigated the detail of the proposed method. The flowchart of the
proposed method is illustrated in Fig. 9.2. The proposed method provides three
different change maps that are the binary change map, the magnitude of changes, and
the multiple-change map.

14Pearson correlation coefficient.
15Simplex identification via split augmented Lagrangian.
16Harsanyi–Farrand–Chang.
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9.2.1 Global Predictor Phase

The main purpose of the predictor phase is to distinguish the change pixels from the
no-change pixels. For this purpose, the CC algorithm was used to highlight the
changing area from the no-change area based on second-order statistics. The result
of this phase is a cube data that change areas that differ from no-change areas by
intensity.

9.2.2 Analysis Phase

The main purpose of this part includes (1) extraction and estimation of endmembers
on masked stack data which is performed using HFC and SISAL algorithms, and
(2) the output of the CC method is a cubic data; therefore, to aggregate and
standardize the output of CC method, the Z-score analysis was applied, and then
the single-band data was generated. After extracting and estimating the endmembers,
the PCC method is applied to generate the “multiple-change” map. The output of
Z-score analysis is used for two purposes: (1) the Z-score analysis is used in
combination with the Otsu algorithm in order to generate unsupervised training
data, and (2) this method combines binary change maps for extracting the amplitude
of change map as a single output.

Fig. 9.2 An overview of the proposed method and three blue output boxes

162 M. Hasanlou and S. T. Seydi



9.2.3 Decision Phase

The decision phase is used for (1) locating the change and no-change pixels (i.e.,
binary change map), (2) extracting “multiple-change” information, (3) calculating
the amplitude of the change map, and (4) automatically generating training data.
This phase uses three algorithms: the SVM classifier, the Otsu algorithm, and the
PCC algorithm.

9.2.3.1 Training Data Generation

This part explains the automatic production of training data for the SVM classifier by
incorporating the Otsu algorithm over the output of CC and the Z-score analysis.
After pre-processing of input bitemporal hyperspectral datasets, the first step in the
flowchart of the proposed method begins with applying CC transformation and
highlighting change pixels from no-change pixels. The second step of the proposed
method is to implement the Otsu algorithm for producing the initial change map.
This initial change map contains several change pixels mixed with no-changed pixel
(i.e., unfavorable change pixels) (Fig. 9.3). Therefore, for the initial change map that
contains two classes, change and no-change, the Otsu algorithm is applied once
again for each of the previous output classes on the Z-score pixels, and the three
classes are divided according to Fig. 9.2.

This process causes more isolation and increases the reliability of change and
no-change pixels. The main reason for dividing the three classes is that the first class
for no-change class and the third class for change contain many noise pixels because
the noise has the minimum value and the maximum value. Therefore, the first class
for no-change and the third class for change are eliminated. The third class for
no-change and the first class for change contain mixed pixels of change with
no-change; therefore, these classes are also removed. In the next step, the pixels
whose locations are found via the output of the CC algorithm are selected as the
training set for the SVM classifier.

Fig. 9.3 Extraction of training data using iterative Otsu algorithm
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9.2.3.2 Tuning SVM’s Kernel Parameters

After producing training data, the parameters of the SVM classifier, including the
optimal kernel parameters, are tuned. In this regard, the prepared input datasets are
divided into two groups: (1) training data (30% of pixels) and (2) testing data (70%
of pixels). The tuning parameters are based on grid search (GS), and the evaluation
type is cross-validation that a range is defined for the parameters of kernel and SVM.
The SVM classifier is trained using training data based on the defined value of in GS
then model made evaluated on training data used criteria such as overall accuracy.
The process is repeated until all of the ranges are covered. Finally, the best value of
accuracy is equal to tune parameters.

9.2.3.3 Binary Change Map

In the next step, the SVM classifier (based on obtained tune parameters in the
previous section) is applied to the output of the CC algorithm. The output of this
classifier is a binary change map (i.e., a map with two classes: change and no-change
pixels). The binary change map is determined by assigning each pixel in the image
space change or no-change values. The values of change pixels are set to one, and
the no-change pixels are set to zero.

9.2.3.4 Amplitude of Change

The amplitude of the change map shows the intensity of change. Thus, a high-
intensity value represents higher change. The amplitude of the change map is
extracted by multiplying the final binary change map by Z-score values, as shown
in Fig. 9.4.

Fig. 9.4 The flowchart of computing amplitude of change
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9.2.3.5 Extracting “Multiple-Change” Information

Retrieving accurate “multiple-change” change information is required in many CD
analyses (Hussain et al. 2013). In this study, “multiple-change” information is
created based on the estimation and extraction of endmembers in the multi-temporal
hyperspectral dataset. For this purpose, these four steps are required: (1) masking the
change area on stack hyperspectral dataset using final binary change map, (2) esti-
mating endmembers by using HFC methods, (3) extracting endmember using SISAL
algorithm, and (4) assigning a label for each pixel by finding maximum similarity
between pixels of stacking layers and the extracted endmembers by incorporating
PCC algorithm. To produce the “multiple-change” map, it is necessary to assign a
label to each endmember. Therefore, the PCC algorithm measures the similarity
between each endmember and each pixel in stacked hyperspectral data. Usually,
assigned labels correspond to endmembers with the highest similarity value. In the
next step, pixels with high similarity values related to one of the endmembers are
assigned their corresponding labels (Fig. 9.5).

9.3 Methodology

As discussed in the previous section, the proposed hybrid method consists of six
main algorithms (Fig. 9.2): (1) chronochrome (CC), (2) Z-score analysis, (3) Otsu
algorithm, (4) the SVM classifier, (5) endmember extraction and estimation algo-
rithm, and (6) Pearson correlation coefficient (PCC). Also, the proposed method

Fig. 9.5 The flowchart retrieving “multiple-change” information
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consists of three main phases including (a) predictor phase, (b) analysis phase, and
(c) decision phase. These algorithms and phases are described in more detail in this
section.

9.3.1 Chronochrome

The chronochrome approach, proposed by Stocker and Schaum, provides a predic-
tion based on the joint second-order statistics between the reference and test images
(Eismann et al. 2008; Schaum and Stocker 1998). The main purpose of this method
is to estimate the background in the test image as a linear function of the reference
image and detect the changes in the resulting difference image (Schaum and Stocker
1998; Vongsy 2007). For this purpose, given x, a linear predictor is fitted for y. The
centered covariance and cross-covariance are computed before fitting a linear esti-
mation to y-data as a function of the x-data (Eq. 9.1):

X ¼ xjxth i, Y ¼ yjyth i, C ¼ yjxth i ð9:1Þ

A linear estimate of the y-data from the x-data is (Eq. 9.2):

y ¼ Lx ð9:2Þ

where L is the optimal vector wiener filter solution that it is given by (Eq. 9.3):

E ¼ y� Lxð Þ y� Lxð Þt� � ð9:3Þ

Also, E is minimized when L ¼ CX�1. Therefore, we have:

y ¼ Lx ¼ CX�1
� �

x ð9:4Þ

And according to Eqs. 9.3 and 9.4:

εcc ¼ yð Þ � CX�1
� �

x
� � ð9:5Þ

where εcc is a change residual image. As depicted in the flowchart of the proposed
method in Fig. 9.2, chronochrome is incorporated in the predictor phase on the
hyperspectral data.
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9.3.2 Z-Score Analysis

The Z-score provides the magnitude and directions of deviation from the mean of the
distribution which is introduced in the distribution unit of standard deviation. The
Z-score is defined in Eq. 9.6 as follows (Cheadle et al. 2003):

modified � Z Score ¼
XN

i¼1
xi �meanið Þ=stdið ÞÞ ð9:6Þ

In this study, a version of Z-score value is adopted which is, in fact, a normal-
ization that allows us to have the amplitude of change as the output of our proposed
method. As stated in Eq . 9.6, the output of this procedure is a single band (Fig. 9.5).
The Z-score analysis is then applied to the output of the CC method in the analysis
phase as depicted in the flowchart of the proposed method (Figs. 9.2 and 9.6).

9.3.3 Otsu Algorithm

The Otsu algorithm is a group thresholding algorithm that performs image clustering
automatically. The idea behind this approach is that the threshold value determines
the weight of the variance within the minimum class value. The variance within the
class is the variance of the total weight of each defined cluster (Ng 2006; Otsu 1979).
In this study, the Otsu algorithm was applied for unsupervised preparation of training
data for the SVM classifier according to as shown in the flowchart of the proposed
method (Fig. 9.2).

9.3.4 Endmember Extraction

The common method for producing “multiple-change” information is classification,
which was discussed in the introduction section. However, this chapter proposes a
new procedure for retrieving “from-to” information without applying classification.
In this regard, the proposed procedure uses estimation/extraction endmembers as
well as the PCC algorithms. On the other hand, many methods are developed for
estimating the number of endmembers. We apply the popular HFC method which is
based on the distribution of the differences of the eigenvalues of the correlation and
the covariance matrices, respectively (Chang and Du 2004). After estimating the

Fig. 9.6 The output of the
Z-score analysis has a
single band
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number of endmembers, endmember extraction begins. Various endmember extrac-
tion methods exist in the literature including SISAL (Bioucas-Dias 2009; Keshava
2003; Parente and Plaza 2010). The SISAL algorithm is an unsupervised method for
endmember extraction based on fitting a minimum volume simplex to the data
subject to a series of constraints. However, it is inevitable to estimate the number
of endmembers before using the SISAL algorithm (Bioucas-Dias 2009). In this
study, we apply the endmember extraction on the output of the CC algorithm as it
can be observed in the flowchart of the proposed method (Fig. 9.2).

9.3.5 Pearson Correlation Coefficient

The PCC is one of the most popular measures for calculating the dependency
between two spectral vectors. This measure is widely used in remote sensing
applications (Wang 2013). The PCC between spectral random vectors is defined as:

PCC ¼ cov x, yð Þ
σxσy

ð9:7Þ

where x and y represent the target and reference spectra and σx and σy are the
standard deviations of x and y spectral vectors, respectively. This study utilizes
PCC in the decision phase for stacking layer data to retrieve the “from-to” informa-
tion, as depicted in the flowchart of the proposed method (Fig. 9.2).

9.3.6 Support Vector Machine

The SVM is a supervised machine learning algorithm that is commonly used for
classification purposes and is based on the statistical learning theory (Vapnik 2013).
SVM has recently been applied in the classification of multispectral and
hyperspectral remote sensing datasets successfully (George et al. 2014; Melgani
and Bruzzone 2004). The main idea behind SVM is to find a hyperplane that
maximizes the margin between the two classes (Vapnik 2013). This algorithm has
several critical parameters including kernel parameters and the penalty coefficient
(C). The popular kernels incorporated in SVM include polynomial, radial bias
function, and linear kernels (Gaspar et al. 2012; Hasanlou et al. 2015). Different
types of kernels and parameters for SVM are presented in Table 9.1.

This study incorporates the SVM algorithm, in the decision phase, on the output
of the CC algorithm to make binary changes as illustrated in the flowchart of the
proposed method (Fig. 9.2).
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9.4 Experiments

In this section, the experimental data and study area are discussed. Also, the results
extracted from the proposed method evaluated by qualitative and quantitative criteria
are presented. In addition, the change map results of the proposed method are
compared with the most common and popular CD algorithms.

9.4.1 Study Area

In this study, three different satellite (i.e., EO-1) hyperspectral image datasets are
used for analyzing changes in wetlands and waterbodies as illustrated in Fig. 9.7 and
Table 9.2. These datasets have been previously used in many hyperspectral change
detection papers (Liu 2015; Seydi and Hasanlou 2016, 2017; Wu et al. 2012), and
they can be considered benchmark datasets. The ground truth datasets were devel-
oped by the authors through visual analysis and interpretation of the
abovementioned researches. Additionally, by using high-resolution image datasets
from Google Earth, a detailed visual comparison was carried out. Details and
descriptions of each dataset will be presented in the next section. The Hyperion
sensor contains 242 spectral bands with wavelengths between 0.4 and 2.5 microme-
ters and with a spatial resolution of 30 m and a bandwidth of 7.5 km. Hyperion data
were obtained at two separate range images using the push broom technology (Jafari
and Lewis 2012). One of these spectra was a VNIR range which includes 70 bands
between wavelength 356 and 1058 nm and SWIR wavelength consisting of
172 bands between wavelength 852 and 2577 nm (“USGS EO-1” 2017).

9.4.1.1 Poyang Lake (Dataset #1)

The Poyang Lake located in Jiangxi Province is one of largest freshwater resource
and biggest floodwater storage wetland areas in China which is located within
coordinates 28�240 to 29�460N and 115�490 to 116�460E (Chan and Xu 2013;
Yang and Yan 2016). The extended area of the captured region in the hyperspectral
dataset is 232 � 131 pixels. These datasets were acquired from July 16, 2004 and
July 27, 2002 (Fig. 9.7a, b).

Table 9.1 Different types of kernels and parameters in the SVM classifier

Kernel type Formula Estimation parameters Number parameters

Linear k(x, y) ¼ xTy C 1

Polynomial k(x, y) ¼ (γxTy + β0)d d, γ, β0, C 4

Radial basis function k x, yð Þ ¼ e �γ x�yk k2ð Þ γ, C 2
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9.4.1.2 Umatilla River (Dataset #2)

The Umatilla River is a gravel-bed river originating in the Blue Mountains of
northeastern regions that flows into the Columbia River at Umatilla, OR, USA
(Hughes et al. 2006). The extended area of the captured region in the hyperspectral

Fig. 9.7 The (a) and (b) presented false-color composite of the original hyperspectral images
acquired in 2002 and 2004 of dataset #1 in China, respectively, (c) ground truth, and (d) presented
geographical location dataset #1. The (e) and (f) presented false-color composite of the original
hyperspectral images acquired in 2004 and 2007 of dataset #2 in the USA, respectively, (g) ground
truth, and (h) presented geographical location dataset #2. The (i) and (j) present false-color
composite of the original hyperspectral images acquired in 2006 and 2006 of dataset #3 in Iran,
respectively, (k) ground truth, and (m) presented geographical location dataset #3
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dataset contains 308 � 241 pixels and was acquired on May 1, 2004 and May
8, 2007 (Fig. 9.7c, d).

9.4.1.3 Shadegan Wetlands (Dataset #3)

Shadegan wetland is one of the largest wetlands in Iran. This wetland is created by
the downstream part of the river Jarahi and is located at coordinates 30�500 to
31�00’N and 48�200 to 49�200E. The northern section of this wetland includes
freshwater, and the salty waterbody is located in the southern part. Also, this wetland
is home to different types of plants. The extent of the desired region extracted from
EO-1 Hyperion satellite hyperspectral images was 220� 123 pixels. In this area, we
incorporate two multi-temporal datasets acquired on June 29 and June 6, 2006. In
Fig. 9.7e, f, a false-color composite of hyperspectral Shadegan wetland images for
two different times is illustrated.

9.4.2 Implementation

Data pre-processing plays an important role before the beginning of the main process
and can be divided into two categories (Jafari and Lewis 2012): spectral and spatial
correction. The pre-processing step starts with spectral correction processing; then
spatial correction is applied. The first step of pre-processing consists of omitting
no-data bands. In this regard, 44 bands (1–7, 58–76, and 225–242) were removed
from our imagery (Jafari and Lewis 2012; Scheffler and Karrasch 2013). Also, of the
198 initial bands, two noisy bands including 77 and 78 as well as a number of other
bands were removed (Datt et al. 2003; Khurshid et al. 2006). Therefore, 154 bands
were selected in total as the input dataset for the proposed change detection method.

Table 9.2 The characteristic of datasets in different study areas

Datasets
Acquired
date

# of
bands # of pixels

Spatial
resolution (m)

Spectral
resolution (nm)

Poyang Lake #1 July
27, 2002

154 232 � 131 30 10

July
16, 2004

Umatilla
River

#2 May
1, 2004

154 308 � 241 30 10

May
8, 2007

Shadegan
wetlands

#3 June
6, 2006

154 220 � 123 30 10

June
29, 2006
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In the second step, pixels in sample 129 and all lines are shifted to sample 256 in the
shortwave infrared (SWIR) spectral bands (Goodenough et al. 2003; Jafari and
Lewis 2012; Li et al. 2008). The third step is de-noising, de-striping, and also
removing the zero-line by utilizing means and the global approach (Jafari and
Lewis 2012; Scheffler and Karrasch 2013). The fourth pre-processing step is a
radiometric correction. To achieve this goal, the digital number (DN) values of
pixels are converted to physical radiance. The fifth step of the pre-processing is an
atmospheric correction, which we used the FLAASH17 model. The final step of the
pre-processing of the hyperspectral dataset is a spatial correction. The accuracy of
the geometric correction (RMSE) was less than 0.4 pixel for all three datasets.

As already discussed, the outputs of the proposed method are (1) binary change
map, (2) the amplitude of change map, and (3) the “multiple-change” information
map. The structure and details of the proposed method are illustrated in Fig. 9.2. This
work considered a type of kernel that is widely utilized in the remote sensing
community (Liu and Parhi 2016; Ring and Eskofier 2016; Sakthivel et al. 2016;
Shah-Hosseini et al. 2015). To tune and select optimized SVM parameters (i.e.,
gamma (γ) and penalty coefficient (C)), we performed a CV with GS procedures
(Gu et al. 2017; Varma and Simon 2006). Also, to have efficient kernel normaliza-
tion, training and testing data were applied. In the normalization procedure, the data
is mapped to values within the [0,1] span. The minimum and maximum values were
selected based on the minimum and maximum of training data. Table 9.3 presents
the results obtained from tuning parameters for kernel and SVM (i.e., the number of
support vectors (# of SV), penalty coefficient (C), and gamma (γ) parameter) for
three datasets. In addition, this table presented the optimum values for SVM and
kernels in two scenarios: normalize and un-normalize.

Table 9.3 The results obtained from tuning SVM classifier and kernels parameters in different
hyperspectral datasets

Datasets Normalize

Linear Polynomial Radial bias function

C
# of
SV C

# of
SV γ d β0 C

# of
SV γ

#1 Yes 2–8 210 2–3 16 2–7 3 1 2–6 17 2–7

No 23 54 2–7 5 21:
220

3 1 2–3 48 2–7

#2 Yes 2–13 408 2–3 13 2–6 3 1 24 125 2–12

No 25 206 2–6 6 20:
215

3 1 26 125 2–12

#3 Yes 29 5 2–6 608 2–9 3 1 23 65 2–3

No 25 15 2–9 4 2–9:
29

3 1 25 61 2–5

17Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes.
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Table 9.4 presented the performance of the SVM classifier using a type of kernels
in different hyperspectral datasets. The results show the RBF kernel has the best
performance for three datasets. Also, the normalizing dataset improved the accuracy
result of the CD.

As mentioned in the above section, to have “multiple-change” information in this
study, we used HFC, SISAL, and PCC algorithms. In the HFC algorithm, false alarm
probability (Pf) parameters are assigned. A number of endmembers and false alarm
probability are listed in Table 9.5.

As we have already discussed in the previous sections, it is essential to compare
and check the performance of the proposed method with common and popular CD
methods. In this regard, we incorporated ground truth data for all three datasets to
compute the validation criteria. In this paper, both quantitative and qualitative
criteria were used for comparing the result. The popularly employed CD methods
are principal component analysis (PCA) (Adar et al. 2011; Vongsy et al. 2009;
Vongsy 2007), cross equalization (CE) (Adar et al. 2011; Eismann et al. 2008),
spectral angle mapper (SAM) (Adar et al. 2011), subspace-based (SSB) (Wu et al.
2013), multivariate alteration detection (MAD) (Nielsena and Müllerb 2003), and
iterative reweight-MAD (IR-MAD) (Nielsen 2007; Seydi and Hasanlou 2016). All
of these methods require assigning suitable thresholds. In this study, unsupervised
segmentation by incorporating the Otsu algorithm was used to set these thresholds.

Therefore, by considering the optimum kernel parameters (Table 9.3) for SVM
classification for all datasets (#1, #2, and #3), the proposed method begins. Figure 9.8
shows a visual analysis of the proposed method and other CD methods on multi-
temporal hyperspectral datasets #1. As it is clear in Fig. 9.8, the proposed method
can detect all changes and provide information about the feature changes including

Table 9.4 Performance of the SVM classifier using a type of kernels in different hyperspectral
datasets

Datasets #1 #2 #3

Kernel
function Normalize

Overall
accuracy
(%) Kappa

Overall
accuracy
(%) Kappa

Overall
accuracy
(%) Kappa

Linear Yes 96.77 0.927 97.16 0.907 92.73 0.756

No 94.68 0.884 97.05 0.906 92.84 0.760

Polynomial Yes 90.83 0.806 97.10 0.908 96.17 0.885

No 88.11 0.705 94.75 0.816 89.57 0.628

Radial bias
function

Yes 97.40 0.941 97.16 0.908 96.44 0.892

No 96.65 0.922 97.16 0.908 96.34 0.890

Table 9.5 The number of
endmembers and false alarm
probability (Pf) for different
datasets

Datasets # of endmembers Pf
#1 6 10–3

#2 4 10–3

#3 3 10–5
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the “multiple-change” change map as well as the amplitude of changes in the map.
This observation empirically proves that the proposed method nearly detects all of
the changes compared to the other techniques. In the endmember extraction section,
we described that the SISAL and HFC methods were used to obtain the “multiple-
change” map. Hence, six classes detected and produced the “multiple-change”
change map (Fig. 9.8c) for dataset #1. Figure 9.8b shows the amplitude of changes
where the changing intensity is clearly highlighted.

The same computational approach is applied to dataset #2. Figure 9.9 shows
changes of Umatilla River where there are many land cover change types in areas
that contain different agricultural fields. Also, in this figure, there are low changes in
the edges of the river. In this dataset (#2), the “multiple-change” change map has
four classes that are detected by the proposed method (Fig. 9.9c). In Fig. 9.9, some
algorithms show a certain level of sensitivity to the waterbody area such as the
results presented in Fig. 9.9e, f, g. On the other hand, one can clearly observe from
the results (Fig. 9.9a–c) that the proposed method has excellent performance com-
pared to other approaches in this area.

Similarly, Fig. 9.10 presents the results of the CD methods on Shadegan wetland
(dataset #3). In this region, the main changes are originated from seasonal changes in
the water level. The proposed method can find three different classes for the
changing area (Fig. 9.10c). As it is clear from the figure, the similarity-based
methods such as SAM technique are not suitable for monitoring the changes due
to the extraction of false alarm pixels.

Fig. 9.8 The results of CD methods for dataset #1. (a) Proposed method, binary change map; (b)
proposed method, amplitude of change map; (c) proposed method, “from-to”map; (d) CE; (e) SSB;
(f) IR-MAD; (g) MAD; (h) PCA; (i) SAM; and (j) ground truth
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Fig. 9.9 The results of CD methods for dataset #2. (a) Proposed method, binary change map; (b)
proposed method, amplitude of change map; (c) proposed method, “from-to”map; (d) CE; (e) SSB;
(f) IR-MAD; (g) MAD; (h) PCA; (i) SAM; and (j) ground truth

Fig. 9.10 The results of CD methods for dataset #3. (a) Proposed method, binary change map; (b)
proposed method, amplitude of change map; (c) proposed method, “from-to”map; (d) CE; (e) SSB;
(f) IR-MAD; (g) MAD; (h) PCA; (i) SAM; and (j) ground truth
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After the primary observational analysis, we perform a numerical evaluation. In
this regard, two common measures are used for evaluating the performance and
accuracy of CD methods which include overall accuracy and kappa coefficient. All
implemented CD methods are supervised, and their related accuracy is usually
computed by examining the best threshold value selection. That means each thresh-
old has a correlation with the accuracy, and maximum accuracy is considered as the
final accuracy. Table 9.6 presents the accuracy of the proposed method for the RBF
kernel and other CD techniques.

We can clearly observe the superiority of the proposed method compared to other
methods in all three different hyperspectral datasets in Table 9.5. Also, as presented
in Table 9.5, the PCA and CE methods have efficiencies close to the proposed
method, especially for hyperspectral dataset #1 and hyperspectral dataset #2. The
IR-MAD algorithm has good performance compared to the MAD algorithm. SAM
and SSB have low performance due to sensitivity to noise and atmospheric condi-
tions. These methods utilizing continuous spectral signatures nevertheless, this issue
caused to don’t suitable for wetland and waterbody change detection using
hyperspectral imagery.

This investigation proposed a new change detection method on hyperspectral
imagery which included observational and numerical analysis and comparison with
other common HCD methods. The proposed method provides three different out-
puts, which provide more detail about the changes, and thus helps in understanding
the changes, while the other CD methods do not give three outputs together. The
lecture review in the introduction section and the type of change detection method in
five main groups are considered. The challenges and advantages are discussed, and
the results of CD certified these issues of CD methods. In addition, more details of
visual and numerical analysis show that (1) the hyperspectral imagery has a high
capability for CD in waterbodies and wetlands; (2) the CE methods provide better
results among common HCD methods; (3) some techniques, such as SSB and SAM,
are not suitable for waterbody change detection due to their high sensitivity; (4) the
proposed method has the highest accuracy for all employed datasets; therefore, it is
efficient for waterbody area; and (5) finally, the proposed methods provide more
detail of changes that can help improve the decision-making process.

Table 9.6 Performance of the proposed method and other common CD methods for all
hyperspectral datasets

Datasets Indices SAM IR-MAD MAD CE SBB PCA Proposed method

#1 Overall 66.01 67.07 65.76 88.89 73.11 89.58 97.40

Kappa 0.223 0.038 0.143 0.727 0.299 0.747 0.941

#2 Overall 75.53 83.85 67.51 93.70 77.855 93.24 97.16

Kappa 0.371 0.304 0.159 0.778 0.400 0.756 0.907

#3 Overall 52.42 86.06 69.53 83.44 63.86 81.81 96.42

Kappa 0.111 0.498 0.092 0.527 0.144 0.485 0.890
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9.5 Conclusion

Wetlands are critical ecosystems where changes occur frequently and widely.
Therefore, creating a framework for monitoring the changes in these ecosystems is
essential. In this regard, studying methods that are able to perform accurate change
detection in these areas is crucial. This investigation presents a new hybrid method
for achieving precise and informative change maps using hyperspectral imagery
without requiring prior knowledge of the wetlands and waterbody area. We first
discussed all the issues related to CDs using hyperspectral imagery. Therefore, a new
change detection method was proposed to address these issues. The proposed hybrid
method uses four groups of CD methods to enhance the content and quality of final
CD results. The experiments were applied to three real hyperspectral datasets on
wetland and waterbody areas from different regions and countries. The output results
showed the following: (1) the hyperspectral imagery has high potential to monitoring
and assessment of wetland and waterbody areas, however, for this purpose, need
special techniques; (2) the visual and numerical analysis proved the excellent
performance of the proposed method for hyperspectral change detection compared
to other methods; (3) superiority of the proposed unsupervised method without
requiring prior knowledge of changes, while some CD methods need training data
or setting parameters; (4) the fact that this method can provide binary change map as
well as the information about change structure (“multiple-change”map) and also the
amplitude map; (5) the use of normalize data and RBF kernel improved the accuracy
CD, significantly; and (6) the fact that the implementation of the proposed method is
simple and has high efficiency in comparison to other famous and commonly used
CD methods like PCA, CE, IR-MAD, SSB, and SAM.
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