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Abstract: Polarimetric decomposition extracts scattering features that are indicative of the physical 

characteristics of the target. In this study, three polarimetric decomposition methods were tested for 

soil moisture estimation over agricultural fields using machine learning algorithms. Features 

extracted from model-based Freeman–Durden, Eigenvalue and Eigenvector based H/A/α, and Van 

Zyl decompositions were used as inputs in random forest and neural network regression 

algorithms. These algorithms were applied to retrieve soil moisture over soybean, wheat, and corn 

fields. A time series of polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar 

(UAVSAR) data acquired during the Soil Moisture Active Passive Experiment 2012 (SMAPVEX12) 

field campaign was used for the training and validation of the algorithms. Three feature selection 

methods were tested to determine the best input features for the machine learning algorithms. The 

most accurate soil moisture estimates were derived from the random forest regression algorithm for 

soybeans, with a correlation of determination (R2) of 0.86, root mean square error (RMSE) of 0.041 

m3 m−3 and mean absolute error (MAE) of 0.030 m3 m−3. Feature selection also impacted results. 

Some features like anisotropy, Horizontal transmit and Horizontal receive (HH), and surface 

roughness parameters (correlation length and RMS-H) had a direct effect on all algorithm 

performance enhancement as these parameters have a direct impact on the backscattered signal. 

Keywords: soil moisture; agriculture; random forest; neural network; SMAPVEX12; UAVSAR; 

polarimetric decomposition 

 

1. Introduction 

Water is critical for all ecosystems and the availability of the right amount of water 

at the right time is crucial in agricultural production [1]. A growing global population and 

shrinking acreages of arable land places pressure on the agricultural sector to increase per 

acre productivity. In addition, a changing climate is creating uncertainty and necessitates 

efficient use of water for crop production. As such, data on soil water reserves can help 

direct cropping decisions with respect to what and when to seed, and decisions on the 

management of water for crop production. 

Soil moisture refers to the volume of water that exists in soil pores at any given point 

in time. Soil moisture at the surface is the most dynamic over time, and the amount of 

water in the top few centimeters can impact seeding decisions, germination, and flood 

risk. As a result, surface moisture availability can have a direct effect on crop productivity 

[2]. Given the importance of soil moisture status, a number of field campaigns have been 

conducted over the last two decades to assist in developing a remote sensing capacity for 

surface soil moisture mapping. These experiments include the collection of ground soil 
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moisture measurements, as well as aircraft and satellite-based data, in campaigns such as 

SMEX02 (Soil Moisture Experiments 2002), SMEX03 (Soil Moisture Experiments 2003), 

SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012), and 

SMAPVEX16 (Soil Moisture Active Passive Validation Experiment 2016) [3–7]. 

Considering the dynamics of surface soil moisture in time and space, characterizing the 

status of soil water over large areas is exceedingly difficult using ground measures 

exclusively [8]. As such, researchers have turned their attention towards developing 

remote sensing monitoring of soil moisture at regional, national, and even international 

scales. 

Both Synthetic Aperture Radar (SAR) and optical remote sensing sensors provide 

opportunities for soil moisture monitoring [9]. Some studies have evaluated methods for 

estimating soil moisture over bare agricultural areas devoid of significant crop cover, 

using empirical, semi-empirical, and theoretical models [10–16]. A crop canopy 

complicates efforts to estimate soil moisture, as vegetation acts as both a scatterer and 

attenuator of active microwave signals [17,18]. 

Polarimetric target decomposition can separate and allocate the amount of 

microwave scattering attributable to the type (surface/single bounce, volume/multiple 

bounce, double bounce) and characteristics (randomness of elements) of target scattering. 

These measures have physical meaning with respect to target conditions [19]. 

Decompositions have the potential to extend soil moisture retrieval from bare to cropped 

conditions if models exploit the separation of scattering from surface and volume target 

components. Target decomposition techniques using different matrices, including the 

scattering matrix [S] and the second-order coherency [T] and the covariance [C] matrices, 

provide scattering descriptors that are interpretable with respect to the target’s physical 

features [20,21]. Coherent decomposition techniques are appropriate for fully polarized 

targets. For partially polarized targets such as soils, incoherent decompositions can be a 

better choice due to random scattering in different orientations [22]. Each element of 

coherency and covariance matrices is a unique descriptor for a specific type of 

backscattered signal [19,23]. 

Several studies have investigated the potential of model-based and 

Eigenvector/Eigenvalue based decompositions for soil moisture retrieval. For example, 

Wang et al., 2016 [24] proposed a simplified version of the Cloude-Pottier model-based 

decomposition for modeling and removing the volume scattering component over 

various vegetation canopies at different crop growth stages. In this study, only the pixels 

with a dominant surface scattering component were used for soil moisture retrieval to 

minimize the contributions of dihedral and volume scattering components. Airborne L-

Band UAVSAR data were used and the researchers removed the contribution of volume 

scattering to total backscatter and applied a correction for the effects of Bragg scattering. 

To evaluate the performance of the proposed method, the scattering component was 

examined before and after the volume scattering removal. Soil moisture was estimated 

with a root mean square error (RMSE) of 0,06–0,12 m3 m−3.This methodology was not 

applicable for regions with dominant dihedral scattering [24], and as a result, Wang et al., 

2017 [25] investigated model-based polarimetric decompositions including those 

proposed by Freeman–Durden 1998, Hajnsek et al., 2009 [26], and An et al., 2010 [27]. The 

volume scattering component was removed leaving only the surface and dihedral 

scattering components. Comparisons among these different decomposition algorithms 

were reported using RMSE and correlation coefficients (R). For corn reported accuracy 

metrics were R = 0.78 and RMSE = 0.059 m3 m−3 and for wheat R = 0.61 and RMSE = 0.15 

m3 m−3 using the Freeman–Durden decomposition. Over canola fields the Hajnesk 

decomposition was the most accurate with R = 0.54 and RMSE = 0.72 m3 m−3, and the An 

et al. decomposition provided the highest accuracies for soybean fields with R = 0.45 and 

RMSE = 0.071 m3 m−3 [25]. In another study, Ozerdem et al., 2107 [27] used the Freeman–

Durden model-based decomposition and H/A/α Eigenvalue/Eigenvector decomposition 

for feature extraction from RADARSAT-2 data. The algorithms were tested on bare soils, 
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soils with low vegetation cover, and soils with dense vegetation cover. The presence of 

vegetation cover reduced the accuracy of predictions. The best results were reported for 

the combination of dense vegetation cover and bare agricultural areas with R = 0.95 and 

RMSE = 0.041 m3 m−3. The least accurate results were obtained for the combination of low 

vegetation cover and bare soils with R = 0.63 and RMSE = 0.098 m3 m−3 [27]. 

The relationship between predictors and input observations are not always linear 

and machine learning techniques can model complicated non-linear relationships [28]. 

Some machine learning techniques, such as neural network and random forest algorithms, 

have been widely and successfully used for soil moisture estimation. In this regard, El Hajj 

et al., 2017 [29] trained and evaluated a neural network algorithm using a synthetic 

database created using the Modified Integral Equation Model and Water Cloud Model for 

estimating soil moisture. They derived soil moisture estimation accuracies of RMSE = 0.05 

m3 m−3 using their neural network algorithm [29]. Istvan et al., 2018 used a random forest 

to capture the non-linear relationship between ground measured soil moisture and 

remotely sensed variables. A R2 = 0.86 and RMSE = 0.032 m3 m−3 confirmed the good 

performance of this algorithm [30]. 

The main objective of this study is to explore the capacity to the prediction of different 

scattering mechanisms extracted from Freeman–Durden, Van Zyl, and H/A/α 

decompositions [20,31,32] to soil moisture in corn, wheat, and soybean fields. Three 

feature selection algorithms including trial and error, backward, and forward feature 

selection algorithms are tested and compared to determine the most useful features. The 

selected features are used to train machine learning algorithms including random forest 

regression and neural network algorithms for soil moisture estimation. This study 

determines the polarimetric features most helpful for soil moisture retrieval. 

2. Materials and Methods 

2.1. Study Site 

This study uses data collected during the Soil Moisture Active Passive Experiment 

2012 (SMAPVEX12). The SMAPVEX12 study area extends 12.8 km × 70 km and is located 

in a predominately annually cropped region of Manitoba, Canada (98°00′23″ W, 49°40′48″ 

N) (Figure 1). The soil textures vary significantly across this site, leading to large variances 

in surface soil moisture. Texture changes from heavy clay to fine loamy sands from east 

to west. This region of Canada has been the focus of extensive microwave soil moisture 

research given the importance of agriculture in this region of Canada and the variance in 

soil moisture within small geography [25,33,34]. In 2012, the crop breakdown within the 

SMAPVEX12 site included cereals (23.4% of the total crop acreage), canola (16.0%), corn 

(9.1%), soybeans (18.5%), and perennial cover (14.6%) [7]. 
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Figure 1. The Soil Moisture Active Passive Experiment (SMAPVEX12) study area is located in 

southwestern Manitoba (Canada). The locations of corn, soybean, and wheat fields sampled 

during SMAPVEX12 are indicated. 

2.2. UAVSAR Dataset 

The airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a 

mission-based, fully polarimetric L-band SAR sensor. UAVSAR data are available in 

several processing levels, including single-look complex (SLC), multi-look complex 

(MLC), ground-range detected (GRD), and compressed stoke matrix (DAT). The details 

of the UAVSAR system and its data are provided in Table 1. In this study, we considered 

the GRD product of flight line #31606 as this provided full coverage of all sampled 

agricultural fields with a 25° to 65° incidence angle [25]. The time-series of the UAVSAR 

dataset was acquired during the SMAPVEX12 project. The simultaneous UAVSAR flight 

with ground soil moisture sampling during SMAPVEX12 are listed in Table 2. The open 

source PolSARpro v.5 software developed by ESA (ESA, Paris, France) was used to 

generate the coherency matrix [T] and covariance matrix [C]. A boxcar filter with a 7 × 7 
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kernel size was applied for noise reduction. This site has minimal topographic variance 

and as such, no topographic correction was applied. 

Table 1. Airborne UAVSAR sensor characteristics. 

Full Name Unmanned Aerial Vehicle Synthetic Aperture Radar 

Polarization Quad polarimetric (HH, VV, VH, HV) 

Frequency L-band, 1.26 GHz 

Dataset distributor 
National Aeronautics and Space Administration (NASA) 

NASA Jet Propulsion Laboratory (JPL) 

Spatial resolution 

(range × azimuth) 

2.2 m × 0.6 m (SLC i) 

6.7 m × 7.2 m (MLC ii) 

6.2 m × 6.2 m (GRD iii) 

6.74 m × 7.2 m (DAT iv) 
i Single look complex; ii multi-looked cross product; iii ground range detected; iv Compressed stokes 

matrix product. 

Table 2. UAVSAR flight dates simultaneously with soil moisture measurement over SMAPVEX12. 

17 June 22 June 23 June 25 June 27 June 29 June 3 July 

5 July 8 July 10 July 13 July 14 July 17 July  

2.3. Ground Measurements 

The SMAPVEX12 field campaign is fully described in [7], with an overview presented 

here. This campaign was executed over 6 weeks (6 June to 17 July 2012) with the intent to 

capture soil moisture conditions immediately following crop emergence to the period of 

peak biomass accumulation. Soil moisture measures were collected for 55 agricultural 

fields including 19 soybeans, 16 wheat, 8 corn, 7 canola, 4 pasture, and 1 forage field. 

Crews measured surface soil moisture (0–5.7 cm), coincident with the airborne flights, 

using handheld coaxial impedance-based dielectric reflectometry probes. In each of the 

55 sample fields, soil moisture was measured at 16 sampling points, with three replicate 

measures at each point. These 16 points were located in two parallel rows designed to 

capture moisture conditions in an 800 m × 300 m area. In this study we considered the 

ground measured soil moisture data for soybeans, corn, and wheat fields. Each soil 

moisture measurement point in each field was used as an input to the retrieval algorithms. 

At these soil moisture sample points, the SAR extracted value was calculated as the 

average of 3 × 3 pixels around each point which covers the 18.2 m × 18.2 m region on the 

ground surface. 

Surface roughness has a significant impact on the scattering characteristics (specular 

or diffuse) and as such, the magnitude of the incident microwave signal that scatters back 

to the sensor. It is important to consider the effects of soil roughness on the received total 

backscattered signal. Roughness changes due to tillage applications, and weathering 

effects. During SMAPVEX12, surface roughness parameters root means square height 

(RMS-H) and correlation length were measured using a 1 m length profilometer with 0.5 

cm pin spacing at non-flight days as surface roughness parameters are less time-sensitive 

features. The RMS-H and correlation length equation demonstrated in Equations (1) and 

(2), respectively. In these equations, N refers to the number of pins in the profilometer, �� 

is height in location i from the ground in cm and � refers to the average of surface height 

in cm. �(��) is known as autocorrelation function and �� refers to the degree of similarity 

between two distinct points in a specified distance. Two sites were dedicated to roughness 

measurement in each field. The roughness profilometers were located parallel to the 

UAVSAR look direction and digital images were acquired at a 118 cm distance from the 

profiler. If crop coverage was a hindrance to the profiler, the vegetation coverage was 

flattened before photo shooting. A 3 m profile was constructed by collecting three end-to-

end profiles, replicated twice in each field. Profiles were collected at the beginning of the 
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field campaign and re-collected if field crews noted significant changes in soil surface 

roughness in the course of the six week campaign. 

� = �
∑ (��

����)�
���

���
, (1) 

�(��) =
∑ ��������

�����
���

∑ ��
��

���

. (2) 

The wheat biomass samples were gathered in a 0.5 m2 area. Soybeans and corn 

biomass samples were also gathered for ten plants in each field (each field consisted of 

two parallel rows with eight sample points in each row). This information provides 

valuable concepts over crop development stage impacts on SAR backscatter signal. 

Valuable information was provided about the planting and harvest date of soybeans, 

wheat, and corn crops during SMAPVEX12 and also crop development at a different time 

interval during soil moisture data gathering by [35] (Table 3). 

Table 3. Planting date, harvest date, and crop development stage of soybeans, wheat, and corn crops [35]. 

 Soybeans Wheat Corn 

Planting Date 9–18 May 17–18 April 30 April–14 May 

Harvest Date 5–20 September 1–20 August 1–12 October 

Crop Development stage during SMAPVEX12 

Start (7–13 June) Leaf development Leaf development Leaf development 

Mid (28 June–4 July) Formation of side shoots Flowering and anthesis Stem elongation 

End (12–18 July) Flowering Development of fruit; ripening 
Inflorescence emergence and heading; 

flowering and anthesis 

2.4. Polarimetric Decompositions 

Quad polarimetric SAR sensors transmit alternate pulses of horizontal (H) and 

vertical (V) waveforms and record the intensity of both V and H polarized scattering and 

the phase difference between these two orthogonal polarizations [36]. A fully polarimetric 

system captures a complete picture of the scattering characteristics of a target and as such, 

is a powerful tool for target discrimination [19]. Polarimetric decomposition techniques 

can be applied to these complex data and may offer advantages in the retrieval of soil 

moisture estimates in the presence of vegetation cover. In this study, the potential of three 

decomposition models is assessed including the Freeman–Durden, Van Zyl, and H/A/α 

decompositions. 

Model-based and eigenvalue-eigenvector decompositions, which are known as 

incoherent target decomposition approaches, are appropriate methods in the case of 

partially polarized target analysis to separate second-ordered coherency [T] and 

covariance [C] matrices. These matrices are derived from the scattering matrix (Equation 

(3)) and are used to extract polarimetric features. 

[�] = �
��� ���

��� ���
�. (3)

Most natural features backscatter the SAR signals that are distributed which leads to 

backscatter of the collided signal to various directions. These targets are considered partially 

polarized. The distribution of scattering elements associated with these natural targets 

creates opportunities for single (surface) scattering events, dihedral (double bounce) events, 

and multiple (volume) scattering. The complex backscattering elements (intensity and 

phase) of the scattering matrix are demonstrated in Equation (3). ��� represents the radar 

signal transmitted in horizontal polarization and received in horizontal polarization. ��� 

and ��� represent signals transmitted in either H or V, but with the orthogonal polarization 

on receive. ���  quantifies the complex polarimetric signal transmitted and received in 

vertical polarization [37]. Four different descriptors, including Pauli and lexicographic 

vectors and covariance and coherency matrices, are extracted from the scattering matrix [S]. 
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The coherency matrix [T] is constructed from the multiplication of the Pauli vector 

and its transpose conjugate [37]. On the other side, the covariance matrix is the result of 

the multiplication of the lexicographic vector and its transpose conjugate [38]. 

2.5. Freeman–-Durden Decomposition 

The model-based three component Freeman–Durden decomposition extracts the 

volume, dihedral (double), and single bounce scattering submatrices from the second 

order covariance matrix [C] [24]. 

[��] = [��]������ + [��]������ + [��]������; (4) 

[��]������ = ��

⎣
⎢
⎢
⎢
⎡1 0

�

�

0
�

�
0

�

�
0 1⎦

⎥
⎥
⎥
⎤

  �� =
���

�
; (5) 

[��]������ = �� �
|�|� 0 �

0 0 0
�∗ 0 1

�  �� = ��(1 + |�|�); (6) 

[��]������ = �� �
|�|� 0 �

0 0 0
�∗ 0 1

�  �� = ��(1 + |�|�). (7) 

The [C] matrix is composed of three [C] submatrices (Equations (5) to (7)) which refer 

to single bounce scattering, dihedral scattering, and volume scattering mechanisms of 

coherency matrix. The �� , �� , and ��  represent the scattering amplitudes of volume, 

dihedral, and single bounce scattering component, respectively. ��, ��, and �� refer to 

volume, dihedral, and single bounce scattering powers, respectively. The α and β 

coefficients are the normalized difference of the Fresnel coefficients and the normalized 

difference of Bragg scattering between two HH and VV polarizations. 

Freeman–Durden is an appropriate decomposition technique for vegetation-covered 

soils and has been evaluated for soil moisture retrieval [25,27,39]. 

2.6. Van Zyl Decomposition 

The Van Zyl decomposition is an eigenvector-eigenvalue approach, which is known 

as a non-negative eigenvalue decomposition (NNED) [33]. Van Zyl et al., 2011 proposed 

this decomposition to evaluate the volume backscattering portion from vegetated regions 

[21]. In this approach, the covariance matrix is modified to remove negative eigenvalues. 

The radar cross section (RCS) is the ratio of the intensity of energy scattered from a target 

in the direction of the radar to the intensity of energy intercepted by a target. For natural 

distributed targets the RCS should have a non-negative value. Van Zyl et al. applied the 

Freeman–Durden and Yamaguchi decompositions to a SAR image of a heavily forested 

region in Germany. The outcome confirmed the existence of some pixels with negative 

power responses after the contribution of volume scattering was subtracted from the 

covariance matrix. The negative values do not have physical meaning with respect to 

these distributed targets. Van Zyl et al., 2011 proposed a modification to the covariance 

matrix (Equation (6)) to remove these negative values. The [������]  is the covariance 

matrix predicted by other models and the [����������]  is a term representing a parameter 

not included in the [������] covariance matrix. The eigenvalues should be non-negative 

in order for coefficient � in Equation (8) to have physical meaning. 

〈[�]〉 = �[������] + [����������]. (8)

The [����������] matrix is symmetric, as provided in Equation (9), to limit the values 

of the � coefficient. The eigenvalues of this matrix are described by Equation (10). The 

�, �, �, and � parameters pertain to shape, statistical angular distribution, and size of the 

targets [32]. 
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[����������] =  �

� 0 �
0 � 0
�∗ 0 �

� − � �

�� 0 ��

0 �� 0
�∗

�
0 ��

�, (9)

�� =
1

2
{� + �} 

�� =
1

2
{� − �} 

�� = � − ��� 

� = ��� − 4(� − ���)(� − ���) + 4|� − ���|�. 

� = � + � − ��� − ��� 

(10)

2.7. H/A/α Decomposition 

Cloude and Pottier proposed an eigenvalue-eigenvector approach, known as H/A/α, 

as an incoherent target decomposition [20]. The coherency matrix, from which the H/A/α 

decomposition is extracted, is a positive Hermitian matrix that consists of three 

orthogonal eigenvectors and eigenvalues, equal to or greater than zero (Equation (11)). In 

this equation, [U] elements are considered as orthogonal eigenvectors, and � parameters 

refer to real and non-negative eigenvalues. ��  in Equation (12) expresses each scattering 

portion [19]. 

〈[�]〉 = [��][Σ][��]��, (11)

�� =
��

∑ ��
�
���

. (12)

Three physical features can be extracted directly from this matrix, including entropy 

(H), alpha (α), and anisotropy (A) parameters that range from zero to one. The α parameter 

extracted from Equation (13) indicates the predominant scattering mechanisms. α equal or 

near zero is considered as surface scattering, α equal or near 
�

�
 is indicative of dihedral 

scattering, and α near or equal 
�

�
 is associated with volume scattering. The entropy 

parameter characterizes the degree of randomness of scattering within a target (Equation 

(14)). For targets with more predictable scattering, entropy approaches zero (H = 0). 

However, when scattering elements have a degree of random distribution, scattering is less 

predictable and entropy as a metric of randomness approaches one (H = 1). The third 

parameter can be extracted from the H/A/α parameter and is known as anisotropy (Equation 

(15)), which is interpretable when entropy is greater than 0.7. A defines the relationship and 

importance of the secondary and tertiary scattering components, �� and ��. 

�� =
��

∑ ��
�
���

, (13)

� = − ∑ ��
�
��� log�(��), (14)

� =
�� − ��

�� + ��

       ���  � > 0.7. (15)

Table 4 lists all the polarimetric features of the Freeman–Durden, Van Zyl, and H/A/α 

decompositions. The polarimetric and non-polarimetric features and soil parameters used 

in this study for the soil moisture modeling are also listed in Table 5. 
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Table 4. Various polarimetric feature elements from different polarimetric decomposition methods. 

Decomposition Method Elements 

Freeman–Durden Surface scattering, dihedral scattering, and volume scattering 

Van Zyl Surface scattering, dihedral scattering, and volume scattering 

H/A/α Entropy, alpha, and anisotropy 

Table 5. The features used as input for soil moisture modeling. 

1. Surface scattering Freeman (FD Surface) 11. Surface scattering/dihedral scattering (Sur/Di) 

2. Dihedral scattering Freeman (FD Dihedral) 12. RMS-H 

3. Volume scattering Freeman (FD Volume) 13. Correlation Length 

4. Surface scattering Van Zyl (VZ Surface) 14. VH 

5. Dihedral scattering Van Zyl (VZ Dihedral) 15. HH 

6.Volume scattering Van Zyl (VZ Volume) 16. VV 

7. Entropy H/A/α 17. HH/VV 

8. Alpha H/A/α 18. VH/VV 

9. Anisotropy H/A/α 19. VH/HH 

10. Surface scattering/(Surface + Dihedral + Volume) scattering (Sur/(Sur + Di + Vol)) 

2.8. Machine Learning Algorithms 

Theoretical, empirical, and semi-empirical scattering models have been evaluated to 

retrieve soil moisture estimates from SAR data. Semi-empirical models include some 

elements of scattering theory but are simplified and require parameterization typically 

using field observational data. These parameterizations lead to limitations in terms of 

regions of validity with respect to SAR configurations (incidence angles, polarizations, 

and frequencies) and target conditions (soil moisture and surface roughness ranges). 

However, these models are much easier to invert and are thus more applicable to 

operational implementation. In addition to the complexity of theoretical scattering 

models, and the limitations in the applicability of semi-empirical models across wide-

ranging conditions, these models do not easily capture the non-linearity between natural 

targets and SAR features. Machine learning approaches are more appropriate to model 

these non-linear relationships between output and input parameters [40,41]. In this study, 

because of the different ranges of feature values, a normalization process was 

implemented. As a result, the range of each feature was allocated between zero to one. 

Next, the dataset was randomly divided into training and testing subsets. Sample data 

were randomly selected for algorithm training (75% of the whole dataset) and 

independent validation (25% of the whole dataset). All accuracy metrics were calculated 

and demonstrated as results of this study on the unseen dataset (test set) for each 

algorithm. 

2.8.1. Random Forest 

Random forest (RF) is a robust machine learning algorithm that has been applied to 

both regression and classification problems and can address non-linear relationships 

between the target and input features [42,43]. As a supervised algorithm, RF requires 

sample training data. This algorithm creates the forest using a series of individual decision 

trees, each tree with a random subset of features [44]. Each tree accesses a random sub-

dataset of training samples and predicts the target values. In the case of regression 

problems, each tree has a vote, and the prediction value is the average prediction of all 

decision trees. This algorithm can determine the relative importance of each input feature 

which is important in understanding the contribution of each feature to the RF output. 

RF has been used as an ensemble learning approach to estimate soil moisture [45–

49]. However, the use of polarimetric features as inputs to RF prediction of soil moisture 

is limited. This study investigates the ability of RF to estimate surface soil moisture from 

fully polarimetric SAR features. Due to the random operation of choosing features for 
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each of the trees and to avoid overfitting issue, the algorithm was trained 50 times, then 

the average of all iterations was calculated on train and tested separately, and the results 

on the test set were considered as the absolute accuracy (Table 6). The train and test 

datasets were divided once and stayed fixed for all iterations. The RF was implemented 

using the python programming language using scikit-learn library. 

Table 6. The selected features from trial and error, FFS and BFS feature selection methods for each 

crop independently. 

Feature 

Feature Selection Method 

Trial and Error FFS BFS 

SB WH CO SB WH CO SB WH CO 

FD Surface ●      ● ● ● 

FD Dihedral ● ●      ● ● 

FD Volume  ●     ●   

VZ Surface   ●    ● ● ● 

VZ Dihedral        ● ● 

VZ Volume  ● ●      ● 

Alpha ● ● ●  ● ●  ● ● 

Anisotropy ● ● ● ●  ● ● ● ● 

Entropy ●  ●    ● ● ● 

RMS-H ● ● ● ● ● ● ● ● ● 

Correlation Length ● ● ● ● ● ● ● ● ● 

HH  ●  ● ● ●    

VH ● ●     ●   

VV   ●    ●  ● 

HH/VV ●  ● ● ●  ●   

VV/VH  ●     ● ●  

HV/HH        ●  

Sur/Di       ● ● ● 

Sur/(Sur + Di + Vol)       ● ●  

Total Features 9 10 9 5 5 5 13 13 12 

SB = soybeans; WH = wheat; CO = corn; FFS = Forward Feature Selection; BFS = Backward Feature 

Selection. 

2.8.2. Neural Network 

Neural network (NN) regression has also been assessed for its ability to estimate soil 

moisture [29,50,51]. Neural networks are constructed from several neurons that make 

mathematical decisions to deal with complex issues. The simplest neural network has an 

input, hidden, and output layer. As the complexity of the problem increases, the 

complexity of the NN model also increases as more hidden layers are used. In this study, 

we use a feed-forward multi-layer perceptron (MLP) neural network [52]. We used the 

rectified linear units (ReLU) activation function. ReLU is an often-used activation function 

because it is less computationally expensive in comparison to other activation functions 

like Tanh and Sigmoid. The ReLU activation function is used as the non-linear function 

for hidden layers and as with other regression problems, a linear function was considered 

for the output layer. 

To determine the best values for the weight parameters, the loss function provides 

the opportunity to specify the appropriate weights. There are different statistical 

parameters available in the regression context for loss value estimation such as root mean 

squared error (RMSE), mean absolute error (MAE), and mean bias error (MBE), which 

specify the goodness of weight parameters. Lower loss values indicate better weight 

parameters. In Equations (16) to (18) �� refers to actual observation, ��� refers to model 

estimated values, and ��� is the mean value of all y in the range 1 to N. N is the number of 
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sample points. The R-squared, RMSE, MAE, and MBE parameters are used as metrics of 

model accuracy (Equations (16) to (19)). 

���� = �
�

�
∑ (�� − ���)��

��� , (16)

��� =
�

�
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∑ (������)��

���
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∑ (������)��

���
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Figure 2 demonstrates the flowchart of this study as explained earlier. 

In this study, all accuracy metrics including R-squared, RMSE, and MAE parameters 

were calculated and demonstrated in the results section on the test set subcategory to 

evaluate the performance of the trained algorithm on an unseen dataset. All accuracy 

parameters evaluated in Python Programming Language using scikit-learn library. 

 

Figure 2. Workflow describing the application of Synthetic Aperture Radar (SAR) decompositions, 

polarimetric feature selection, selection of training and testing data, and application of machine 

learning algorithms for soil moisture retrieval. 

2.9. Feature Selection 

Feature selection helps to order features in terms of their importance in algorithm 

performance and with respect to their performance in predictions [53,54]. Feature 
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selection helps to prune inputs to prevent overfitting and reduces training time. In some 

cases, the presence of irrelevant features can negatively impact results and reduce the final 

accuracy [55]. In real world regression problems like soil moisture retrieval, a non-linear 

relationship exists between features and target. Also, in most cases, all features have non-

normal distribution and lie in different ranges. To deal with these problems, all datasets 

were normalized before preprocessing to bring all feature values to the specified range. 

There are different manual and automatic methods for feature selection including trial 

and error, backward feature selection, and forward feature selection methods, with three 

selected for evaluation in this study. 

2.9.1. Trial and Error 

In this study, the Pearson correlation matrix, in this study known as correlation 

matrix, is used to document the correlation between soil moisture and each polarimetric 

feature. This graphic is also a convenient approach to tabulate the correlation between 

features. The high correlation coefficient is indicative of the redundancy of some features 

[56]. To assess whether highly correlated features lead to R-squared reduction or not 

which is a debatable topic, the performance of the algorithm was tested by adding 

remaining features that are highly correlated to the main features (R-squared > |0.5|). 

As an initial step, polarimetric features were arranged based on their individual 

correlation (linear correlation) with soil moisture. Next, the features with the highest 

correlation (labeled here as main features) were used individually in the soil moisture 

algorithms and assessed for accuracy. To determine if the value is added by including 

additional remaining polarimetric features, the correlation between main and remaining 

features were calculated. Correlated features can decrease estimation accuracy and 

typically the most relevant features for target estimation are not highly correlated. To test 

this hypothesis, a ± 0.5 Pearson correlation coefficient (R) value threshold was set. Feature 

sets are divided into two categories. Category one contains remaining features with a 

correlation to main features of less or equal to |0.5| and category two with correlations more 

than |0.5|. As the first step, features in category one were arranged based on lower to higher 

correlation value with the ‘main’ feature. The features were added to the algorithm based 

on their arrangement. After each feature entrance, the accuracy metric (R-squared) was 

assessed to evaluate the performance of each feature on accuracy modification. The 

remaining features are retained only if R-squared accuracies of soil moisture estimation did 

not change or accuracies increased. After testing the features in category one, all the above-

mentioned steps were repeated on highly correlated features (category two). In some cases, 

the addition of these highly correlated features not only does not reduce accuracies but also 

improves soil moisture estimates. Given these findings, the correlated features which 

improved accuracies are retained. The list of selected features is provided in Table 5. 

2.9.2. Backward Feature Selection (BFS) 

BFS is a wrapper feature selection technique that uses a grid search procedure for 

irrelevant feature elimination [57]. In this technique, all of the features were used as initial 

inputs to the algorithm. Then the process of removing the least relevant features was 

initiated and the performance of the algorithm was evaluated in each iteration. The 

element which had the least positive effect on algorithm performance was deleted. The 

metric for performance evaluation of the model was a p-value greater than 0.05 which 

means that the features that have p-values greater than 0.05 are deleted from the feature 

list. These steps were repeated until a level of stability was reached, such that the R-

squared value did not change significantly by removing the features. 
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2.9.3. Forward Feature Selection (FFS) 

FFS is another wrapper feature selection technique that is initiated with an empty set 

of features [58]. Features were first normalized to values from zero to one. Then the 

correlation between features was evaluated and features with a correlation (R-value) that 

exceeds |0.5| were removed from the input list. All remaining elements were evaluated 

separately. In each iteration, the feature that provided the best accuracy was selected and 

retained. In each subsequent iteration, the remaining features were added to the last 

version to find the next best feature. This procedure continued until all the features were 

assessed. One of the negative points of this algorithm relates to this fact that by adding a 

feature to the algorithm, it would not be removed from the algorithm. 

3. Results 

3.1. Feature Selection 

Correlation matrixes were generated for each individual crop to document the 

correlation between measured soil moisture and each feature, as well as among features. 

These correlation matrixes for soybeans, wheat, and corn are provided in Figure 3. 

 

Soybeans 
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Wheat 

 

Corn 

Figure 3. Correlation matrixes for soybeans, wheat, and corn. These correlation matrixes 

document the correlation between soil moisture and polarimetric features, and the correlation 

between polarimetric features. HH = transmits and recieves Horizontal Polarization; VH = 

transmits Vertical and recieves Horizontal Polarization; VV = transmits and recieves Vertical 

Polarization; FD Dideral = Freeman Decomposition Dihedral scattering; FD Surface = Freeman 
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Decomposition Surface scattering; FD Volume = Freeman Decomposition Volume scattering; VZ 

Dideral = van zyl Decomposition Dihedral scattering; VZ Surface = van zyl Decomposition Surface 

scattering; VZ Volume = van zyl Decomposition Volume scattering; Sur = Surface Scattering; Di= 

Dihedral scattering; Vol = Volume Scattering. 

A cross-comparison of results from the three feature selection approaches is 

documented in Table 6. Features including the roughness parameters (RMS-H and 

correlation length) were selected regardless of which selection method was applied. The 

roughness parameters highly affected SAR backscattered signals which led to over and 

underestimation of soil moisture retrieval. It is therefore logical that the availability of 

surface roughness information helps soil moisture retrieval with higher accuracy. In some 

cases, the HH backscatter parameter also showed good performance for soil moisture 

retrieval which proves the sensitivity of HH polarization to moisture content. In most 

cases, anisotropy parameter was one of the most important parameters in different 

algorithms. As expressed by Cloude et al., 2000 [59] and Hajnesk et al., 2002 [60] 

anisotropy parameter is sensitive to soil surface roughness. This suggests that these 

parameters are likely to be important contributors to soil moisture retrieval. Other 

features, including volume scattering freeman, dihedral scattering van zyl, 
��

��
 and 

������� ����������

������� � �������� � ������
 are selected only by some of the feature selection methods. These 

features may contribute to the modeling of moisture but are likely to be less important. 

3.2. Soil Moisture Estimation Using a Random Forest (RF) Algorithm 

The accuracy of soil moisture retrieval, using features selected by trial and error, is 

similar to accuracies when all features are used in an RF algorithm. As such, from this 

analysis, it is reasonable to conclude that a limited number of features (in this case less 

than half) can deliver accurate soil moisture estimates. Some features, specifically the 

surface roughness parameters (RMS-H and Correlation Length), are selected for all RF 

runs. Some features like alpha and anisotropy are chosen from most runs. The feature 

importance option in RF models provides this opportunity to rank the features as very 

convenient and efficient. From this option, the authors found out and acknowledged that 

selected features (features with higher importance) have higher importance for soil 

moisture retrieval. The best results are reported for soybeans. For this crop, features 

selected using trial and error as inputs to the RF delivered a high correlation of 

determination of R2 = 0.86. The poorest results were found when the FFS feature selection 

was applied to estimate soil moisture for corn fields (R2 = 0.51). (More accurate soil 

moisture estimates were reported for soybean fields compared to wheat and corn. The 

canopy of soybean crops was more open and soybeans accumulated less above-ground 

biomass. For corn and wheat crops, SAR signals interacted more with less large canopies, 

and even at L-band, less direct soil scattering contributions occurred. 

Trial and error feature reduction procedure delivered results comparable to soil 

moisture retrieval outcomes when all features were input. In the final step of trial and 

error some highly correlated features were retained, and these remaining features 

although highly correlated with main features, appeared to be important in soil moisture 

retrieval. The features selected by the BFS delivered the second most accurate estimates, 

with the FFS selected features the least accurate. The FFS feature reduction method, 

coupled with the RF algorithm, produced the lowest soil moisture accuracies for all crop 

types, and this may be due to the fact that FFS selects the fewest input features. All the 

accuracy results in Table 7 are acquired from the unseen dataset. Soil moisture retrieval 

results over test dataset are given in Figure 4. 

The red line is known as the line of best fit. This line in each scatter plot best expresses 

the relationship between measured and estimated moisture value. The closer sample 

points to line of best fit leads to higher correlation values between measured and retrieved 

soil moisture increases. Like any real-world issue, it’s a very usual phenomenon that 

predicted values for some sample point could be different from ground truth values. SAR 
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signal is sensitive to different parameters in addition to soil moisture including vegetation 

effects and also surface roughness parameters. These parameters lead to biases when it 

comes to the sample points located outside the line of best fit. 

Soybeans 

 
 

(a) (b) 

  

(c) (d) 
Wheat 

 
 

(a) (b) 

  

(c) (d) 

Corn 
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(a) (b) 

  

(c) (d) 

Figure 4. Soil moisture retrieved using a random forest (RF) algorithm plotted against field-

measured soil moisture. Four plots are provided for each crop type (soybeans, wheat, and corn). 

For each crop type, soil moisture retrieval results are provided based on (a) all extracted features, 

and also using features selected by (b) trial and error, (c) forward feature selection (FFS), and (d) 

backward feature selection (BFS) selection procedures. 

Table 7. Soil moisture retrieval accuracies using selected features from Table 6 and a random 

forest algorithm. 

 R2 RMSE (m3 m−3) MAE (m3 m−3) MBE (m3 m−3) 

Soybeans 0.86 0.041 0.030 0.001 

Wheat 0.85 0.042 0.032 0.032 

Corn 0.68 0.032 0.024 −0.002 

Soybeans 0.86 0.041 0.030 0.000 

Wheat 0.83 0.041 0.033 0.000 

Corn 0.60 0.033 0.026 −0.003 

Soybeans 0.85 0.043 0.031 0.001 

Wheat 0.83 0.042 0.033 0.000 

Corn 0.57 0.038 0.027 0.000 

Soybeans 0.84 0.043 0.031 0.001 

Wheat 0.81 0.045 0.033 0.000 

Corn 0.51 0.039 0.028 −0.002 

3.3. Soil Moisture Estimation Using a Neural Network Algorithm 

As with the RF analysis, the NN algorithm was tested for soil moisture retrieval using 

all available features as well as features selected by trial and error, BFS, and FFS methods. 

Soil moisture retrieval results for the validation dataset for each feature selection method 

and crop type are given in Figure 5 and Table 8. 

The best results are obtained using all the extracted features. As with the RF runs, the 

most accurate estimates of soil moisture using an NN are for soybean fields with R2 = 
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0.80 (all extracted features used as inputs). The highest errors are reported for corn using 

FFS selected features R2 = 0.40. The poorer performance for corn fields is not unexpected 

given the large biomass associated with this crop canopy. At peak biomass, corn fields in 

the SMAPVEX12 study site had approximately four times the fresh biomass relative to 

soybean crops (approximately 4000 gm−2 for corn compared to 1000 gm−2 for soybean) [35] 

with the height of the corn canopy averaging 2–2.5 m at peak growth [61]. The size of this 

corn canopy would impede even L-band wavelengths (here 23.8 cm) from reaching the 

soil unimpeded by volume scattering from the crop leaves and stalks. Soybean canopies 

are not only lower in biomass and height, but have wider row spacing than crops like 

wheat. In this region of Manitoba, soybean row spacing varies but the median spacing 

between rows is relatively high (approximately 64 cm). This lower canopy and wider row 

spacing offer ample opportunity for the penetration of L-band waves and direct 

interaction with the soil. The BFS approach selected about half of the available features, 

with the best performance for soil moisture retrieval for soybean, wheat, and corn fields. 

Outcomes in Table 8 were acquired on the test dataset. 

Soybeans 

  

(a) (b) 

  

(c) (d) 
Wheat 
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(a) (b) 

  

(c) (d) 

Corn 

 
 

(a) (b) 

  

(c) (d) 

Figure 5. Soil moisture retrieved using a Neural Network algorithm plotted against field-

measured soil moisture. Four plots are provided for each crop type (soybeans, wheat, and corn). 

For each crop type, soil moisture retrieval results are provided based on (a) all extracted features, 

and also using features selected by (b) trial and error, (c) FFS, and (d) BFS selection procedures. 
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Table 8. Accuracy statistics for estimating soil moisture using a neural network algorithm for 

soybean, wheat, and corn canopies, and different feature selection approaches. 

 R2 RMSE (m3 m−3) MAE (m3 m−3) MBE (m3 m−3) 

Soybeans 0.80 0.044 0.034 0.006 

Wheat 0.77 0.047 0.036 0.000 

Corn 0.70 0.034 0.027 0.003 

Soybeans 0.76 0.048 0.030 0.008 

Wheat 0.71 0.051 0.033 −0.006 

Corn 0.62 0.040 0.026 −0.004 

Soybeans 0.78 0.045 0.035 0.001 

Wheat 0.72 0.051 0.040 −0.010 

Corn 0.67 0.035 0.027 0.001 

Soybeans 0.71 0.050 0.039 0.011 

Wheat 0.73 0.051 0.039 0.005 

Corn 0.40 0.044 0.035 −0.002 

3.4. Comparison Between RF and NN Algorithms 

When the results of the RF and NN algorithms were compared using the same 

selected features, random forest estimates soil moisture to a higher accuracy regardless of 

crop type. 

Several parameters have direct impacts on backscattered SAR signals toward the 

sensor including the crop height and biomass [24]. At early crop growth stages, most of 

the backscatter is related to soil surface impacts. Moving forward to the middle of the 

growing season, the soil surface impacts on the backscattered signal is decreased and it 

reaches its lowest amount at the pick of the crop growth stage. During the SMAPVEX12 

campaign, data were collected from crop emergence (17 June) to fully developed crop 

growth stages (17 July). Therefore, the vegetation impacts on soil moisture estimation 

modeling were significant. However, using the polarimetric decomposition parameters, 

the soil moisture estimation accuracies were at the promising  RMSE range of 0.03–0.05 m3 

m−3 for both RF and NN algorithms and all the crop types. 

4. Discussion 

This study investigates the potential of L-Band Synthetic Aperture Radar (SAR) 

polarimetric features for soil moisture retrieval under three crop canopies (corn, soybeans, 

and wheat). Three feature selection approaches are assessed including trial and error, BFS, 

and FFS. The polarimetric features evaluated are derived from the model-based Freeman–

Durden decomposition and the Eigenvalue-Eigenvector based H/A/α and Van Zyl 

decompositions. Other SAR inputs include backscatter intensities (HH, VV, and HV 

polarizations), polarization ratios, and roughness parameters. Selected features are used 

as input into both a random forest and the multi-layer perceptron neural network 

algorithm with estimated soil moisture validated against field-measured moisture. The 

research uses airborne UAVSAR data and field data collected in Manitoba (Canada) 

during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12). 
Considering other studies, Özerdem et al., 2017 [27] used the backscattering 

coefficients, H/A/α and Freeman–Durden polarimetric features extracted from the C-band 

quad polarimetric Radarsat-2 data to retrieve soil moisture over agricultural regions. They 

used the Generalized Regression Neural Network as their soil moisture estimation 

algorithm. They divided their dataset into bare soil, low vegetation cover, and high 

vegetation cover and derived R = 0.92, R = 0.80, R = 0.74 between the measured and 

estimated soil moisture for these three vegetation cover ranges, respectively. Özerdem et 

al., 2017 stated that the lack of surface roughness data was one of the main restrictions. 

Also, the crop type is not determined in this study. In another case, Wang et al., 2016 [24] 

confined the potential of model-based Cloude–Pottier to surface scattering mechanism. 

They retrieved soil moisture with RMSE = 0.06 to 0.12 m3 m−3 just on pixels with dominant 
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surface scattering mechanism. The proposed method restricted the proposed algorithm’s 

capability for soil moisture retrieval over regions with dominant volume and dihedral 

scattering mechanisms. In other research, Wang et al., 2017 [25] checked the potential of 

three polarimetric model-based decompositions (Freeman–Durden, Hajnesk, and An) for 

soil moisture retrieval. They removed the volume scattering component to investigate the 

potential of surface and dihedral scattering mechanisms over corn, canola, soybeans, and 

wheat vegetation covered fields. However, they neglected the potential of volume 

scattering component on soil moisture retrieval over the agricultural region. Hajdu et al., 

2018 [30] used C-band Sentinel-1 data and the random forest algorithm for soil moisture 

estimation over agricultural fields. They used a backscattered signal (VV polarization, 

vegetation index, and terrain attributes (slope, aspect, roughness, and wetness index)) for 

soil moisture retrieval. Similar to what we demonstrated in this study, their results 

showed that random forest was able to learn the non-linear relationship between ground-

based and remotely-sensed parameters and derived R2 = 0.86 between the measured and 

estimated soil moisture. Hajdu et al. used a dual-polarized dataset which records the 

limited complexity of the targets in comparison to the Polarimetric SAR dataset. Millard 

et al., 2018 [62] used Polarimetric Radarsat-2, MODIS, and Lidar data for soil moisture 

prediction in presence of dynamic surface and vegetation phenomena. The vegetation 

information was derived from a multi-date MODIS dataset. They applied empirical CART 

and random forest regression models for soil moisture retrieval to determine the 

relationship between SAR derived variables, Lidar-derived dynamic surface roughness, 

vegetation features at the vegetation-covered region with ground measured soil moisture 

values. Using Lidar-derived dynamic parameters is one of the attractive points of Millard’s 

study which provides the opportunity to evaluate the effect of surface roughness without 

ground-measured values. 

In comparison to some studies like what was proposed by Hadju et al., 2018 and 

Millard et al., 2018, which used multi-source information, our results prove that the 

potential of polarimetric SAR extracted features provide comparable results for highly 

accurate soil moisture retrieval using only UAVSAR dataset. In comparison to some 

studies which retrieved soil moisture using dual-polarized information, a fully 

polarimetric UAVSAR sensor can record more information. The results obtained from 

some studies (like [27] and [30]) confirm the fact that more and various feature extraction 

could not be a solution for soil moisture retrieval with better accuracy. One of the main 

results in this study shows that in some cases the same accuracy could be obtained using 

a lower number of features. 

In this research, the authors also utilized the potential of volume and dihedral 

scattering like surface scattering and did not refuse part of this information for soil 

moisture retrieval over vegetation coverage. In our study, it was also proven that the 

roughness parameters have significant impacts on soil moisture retrieval accuracy. A brief 

description of the above-mentioned studies is listed in Table 9. The algorithms were tested 

over soybeans, wheat, and corn crops separately to determine the potential of the same 

NN-MLP and RF algorithms over a specific feature set for each field. The results obtained 

from these studies confirm the fact that more and various feature extraction could not be 

a solution for soil moisture retrieval with the highest accuracy. One of the main results in 

this study shows that in some cases the same accuracy could be obtained using a lower 

number of features and some features like roughness parameters, HH backscatter 

intensity, and anisotropy features were most important for soil moisture retrieval over 

this agricultural landscape. The final results show comparable results with similar studies 

as demonstrated in Table 9. 
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Table 9. A summary of above-mentioned studies for soil moisture retrieval using SAR dataset (PD 

= polarimetric decomposition). 

Source Dataset Land Cover Best/Worst Result Model 

Our study UAVSAR Agricultural region 
R2 = 0.86 

R2 = 0.40 
RF, NN 

[24] UAVSAR Agricultural region 
RMSE = 0.06 m3 m−3 

RMSE = 0.12 m3 m−3 

Simplified 

PD 

[25] UAVSAR Agricultural region 
RMSE = 0.06 m3 m−3 

RMSE = 0.11 m3 m−3 

Model-

based PD 

[27] Radarsat-2 Agricultural region 
R = 0.95 

R = 0.63 
GRNN 

[30] Sentinel-1 Agricultural region R2 = 0.86 RF 

[62] 
Radarsat-2, Lidar, 

MODIS 
Peatland 0.14 < R2 < 0.66 RF, CART 

The algorithms were tested over soybeans, wheat, and corn crops separately to 

determine the potential of the same NN-MLP and RF algorithms over a specific feature 

set for each field. The results obtained from these studies confirm the fact that more and 

various feature extraction could not be a solution for soil moisture retrieval with the 

highest accuracy. One of the main results in this study shows that in some cases the same 

accuracy could be obtained using a lower number of features and some features like 

roughness parameters, HH backscatter intensity, and anisotropy features were most 

important for soil moisture retrieval over this agricultural landscape. The final results 

show comparable results with similar studies as demonstrated in Table 9. 

5. Conclusions 

According to this research, the random forest algorithm provides higher accuracies 

for soil moisture estimation when compared to the neural network when using identical 

features. The better performance of the RF is observed for all three crop types and holds 

regardless of the feature selection methods used (trial and error, BFS, or FFS). The best 

results are achieved for lower biomass soybean fields using the RF, with statistical 

performance metrics of the coefficient of determination R2 = 0.86, root mean square error 

(RMSE) = 0.041 m3 m−3 and mean average error (MAE) = 0.030 m3 m−3. The least accurate 

results are reported for corn canopies using a NN algorithm and the FFS feature selection 

approach (R2 = 0.40, RMSE = 0.044 m3 m−3 and MAE = 0.035 m3 m−3). This study 

demonstrated that the accuracy of soil moisture estimation does not depend exclusively 

on the number of features selected for input to retrieval algorithms. That means in some 

cases, relatively similar results were obtained using fewer features. 

Until now, no ground soil moisture measurement project had measured surface 

roughness for all sample points. Due to the considerable effect of surface roughness for 

high accuracy soil moisture retrieval, the roughness parameters could be provided using 

some factors like the land cover, land usage, or very high-resolution bare earth DEM in 

future studies. 
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